g belgelendirme

4
Ağu

Bims Isıl Davranış Testi

bims-isil

13
Tem

Betonun Piyasaya Arzı

Artık betonda G İşareti olmadan piyasaya ürün arzı söz konusu değildir; dolayısıyla betonda tek zorunlu belge G Uygunluk Belgesi olmuştur.

indir-23 Bunun dışında başlangıç dönemlerinde bilgi eksikliği nedeniyle kamu ihalelerinde standarda  uygunluk belgesinin isteneceği durumlarla karşılaşılması söz konusu olabilir ancak bu durumlarda  ihaleyi açan kurum, standarda uygunluk belgesi veren kuruluşun ismini şart koşamaz.

 G İşareti Yönetmeliğine tabi yapı malzemeleri, zorunlu yürürlük tarihi olan 01.07.2010 den sonra  Bayındırlık ve İskân Bakanlığı tarafından piyasa gözetimi ve denetimine tabi tutulacaktır.

Eğer bir ürün G İşareti taşımadan piyasaya arz edilmişse, üretici Bakanlıkça önce uyarılır, belirtilen süre içerisinde belge alınmaz ise idari para cezası ve ürünün piyasaya arzının durdurulması gibi yaptırımlar uygulanır.

14
May

Agregalarda Granülometri

mqdefault1.  AGREGALARIN GRANÜLOMETRİSİ

Agregaların granülometri bileşimi ile şunu anlıyoruz. Agregayı teşkil eden taneler muhtelif boyuttadır. Fakat aynı bir agrega numunesinde belirli büyüklükteki taneler daima belirli miktarda bulunur. İşte granülometri bileşim bize boyutlan belirli limitler arasında bulunan tanelerin ne miktarda agrega içinde bulunduğunu açıklar. Bu maksatla agregalar üzerinde «granülometri deneyleri» yapılır.

İleride açıklanabileceği gibi bir agreganın granülometri bileşiminin o agregayı kullanarak üretilen betonun özelikleri üzerinde gayet önemli etkileri vardır. Bu itibarla kullanılmadan evvel bir agreganın granülometri bileşiminin muhakkak saptanması gereklidir.

 

1.1. Granülometri Deneyinin Yapılışı

1.1.1 Elekler hakkında genel bilgi

Bir agreganın granülometri bileşimi numuneyi muhtelif eleklerden elemek suretiyle saptanır. Elekler belirli boyutlara sahip; dairesel delikler veya kare şeklinde gözlerden meydana gelmek suretiyle iki değişik tiptedir. Metal levhaların eşit aralıkla delinmesi suretiyle aynı çapa sahip deliklerin meydana gelmesiyle belirli boyutlu bir elek yapılmış olur.

Bu elekte agrega elendikten sonra bir kısım taneler elek üstünde kalacak bir kısmı ise geçecektir. Elek üstünde kalan tanelerin boyutları delik çapı olan (d) den büyük, buna karşılık elekten geçenleri (d) den küçüktür. Tellerin örülmesi sonunda kare şeklinde gözlerin meydana gelmesiyle ikinci tip elekler elde edilir. Bu şekilde yapılmış bir elekteki gözlerin iç boyutlarını (a) ile gösterelim. Böyle bir elekten geçen agrega tanelerinin boyutlarının (a) dan küçük olduğu kesinlikler söylenemez. Zira agrega taneleri küre şeklinde veya benzer şekilde düzgün taneler değildir. Bu bakımdan elipsoit şeklindeki tanelerin karenin köşegen doğrultusunda elekten geçmesi kabildir. Böylelikle dairesel delikli elekle, gözlerden meydana gelen elekler arasında önemli bir fark vardır. Dairesel delikli eleklerle yapılan deneylerde bulunan sonuçlar hakikati daha iyi ifade ettiği yukarıdaki açıklamadan anlaşılmaktadır. Bu konuda yapılmış olan çalışmalarda (a) göz boyutunun karşılığı olan dairesel deliğin (d) çapı arasında şu bağıntının bulunduğu kabul edilmiştir:

1,25a = d

Elek boyutları, diğer bir deyişle delik çapı veya göz boyutu, belirli bir değerden hareket etmek suretiyle geometrik bir serinin muhtelif terimleri olarak hesap edilir. Birleşik Amerika’da ASTM ‘in saptadığı elek serisinde gözün başlangıç boyutu 0,419 mm. olarak alınmakta, bundan sonra gelen boyut (0,149X2) =0,298 mm, bunu izleyen 0,149x2X2=0.569 mm olmakta ve boyutlar bu şekilde artarak saptanmaktadır. Bu durumun bir sonucu olarak,  en küçük boyut, bunu izleyenler sırasıyla  ise bu; değerler arasında şu eşitsizlikler vardır.

<

Agrega tanelerinin küçülmesiyle taneler harç ve beton üzerinde etkilerinin önemi çok artmaktadır. Bu sebepten dolayı küçük boyutlar bölgesinde agregaların bileşimlerinin daha duyarlı bir şekilde saptanması gerekmektedir. Yukarıdaki eşitsizlikler bize bu olanağı sağlamaktadır.

Agregaların granülometri bileşiminin saptanması için her ülkede bir elek serisi kabul edilmiştir. Bizim ülkemizde bu bakımdan tam birliğin varlığı ileri sürülemez. TSE tarafından TS706 ve TS707 de hem ASTM ve eski Alman elek serilerine yer verilmiştir. ASTM ’de gözlerden ibaret bir elek serisi kabul edilmiştir. Buna göre bu seriyi meydana getiren eleklerde göz boyutları (Tablo 1-I) de gösterilmiştir.

b) Eleme işlemi:

Gerekli şartları yerine getiren numune boyutu en büyük olan üstüne konur ve elemeye başlanır. Elekten geçenler boyutu hemen küçük olan elek üstünde toplanır ve bu elekten elenir. Bu şekilde boyutu en küçük olan eleğe kadar hareket edilir. Genel olarak eleme işi özel eleme makineleri ile yapılmaktadır. Bu maksatla bir seri elek en küçük boyuttan başlayarak sıra ile üst üste geçirilir. En üstte bulunan en büyük boyutlu elek üzerine numune konulduktan sonra elek takımı makineye yerleştirilir. Makinenin meydana getirdiği sarsıntı ve sarsma hareketleri sonunda 10-15 dakika içinde eleme işi sona erer.

c) Tartma işi:

Eleme işlemi sonunda her elek üstünde bir miktar malzeme kalmış bulunmaktadır. En büyük boyutlu elek üstünde kalan agrega tartılır. Bu elekten hemen sonra gelen daha küçük boyuttaki elek üstünde kalan, bir üst elek üstünde kalana eklenerek tartılır ve bu işe sonuna kadar aynı şekilde devam edilir. Bu maksatla 0,1 gr duyarlıklı bir terazi kullanılması yeterlidir.

 

1.2. Granülometri Eğrileri Ve Bunların Özellikleri

Bir agreganın granülometri bileşimi en iyi bir şekilde granülometri eğrileri vasıtasıyla ifade edilir. Deney sonuçlarından itibaren granülometri eğrisinin ne şekilde çizilebileceğini bir örnek üzerinde açıklayalım.

10 kg ağırlığında kum ve çakıl karışımı üzerinde Alman elek serisini kullanarak ve 30 m/m. den başlayarak granülometri deneyi yapılıyor. Elek üstünde kalanları birbirine eklemek suretiyle tartıyor ve bulunan sonuçlarını kaydediyoruz. Bu suretle aşağıdaki tablo sütun (2) deki değerleri elde

14
May

Agregalardaki Zararlı Maddeler

aggregate-300x300ALKALİ-SİLİKA REAKSİYONU

Betonarme veya beton yapı elemanlarının zamanla bozulup işlevlerini beklenen servis ömürlerine ulaşamadan yitirmelerine birçok faktör sebep olabilir. Yapı elemanının durabilitesini belirleyen etkenler arasında beton bileşimini oluşturan malzemelerin fiziksel ve kimyasal yapısından kaynaklanan iç etkiler ve çevreden kaynaklanan dış etkiler sayılabilir. Bazı durumlarda, beton bileşimini oluşturan malzemelerin kendi aralarında veya çevreden gelen zararlı maddelerle kimyasal reaksiyonlar yapabildiği, böylece yapının yada yapı elemanının hacim sabitliğinin bozulması nedeniyle zarar görebildiği bilinmektedir. Alkali-Silika Reaksiyonu, bu tür kimyasal bozulma nedenlerinden biridir. [K. TOSUN, H. YAZICI, B. BARADAN,2000]

1920’li ve 1930’lu yıllarda ABD, Kaliforniya’daki beton yapılarda nedeni belirsiz çatlak oluşumlarına bağlı yıkımlar rapor edilmiştir. Beton malzemelerin standartlara uygun olmasına rağmen, yapım yılını takiben birkaç yıl içinde çatlaklar oluşmuştur. Genellikle harita çatlağı şeklinde görülen sorun bazen de çatlaklardan jel çıkışı, betonun patlaması gibi belirtiler de göstermiştir. Stanton, 1940 yılında çatlamanın (daha sonra Alkali-Silika Reaksiyonu olarak adlandırılan) kimyasal bir reaksiyonun sonucu olduğunu açıklamıştır. [F.BEKTAŞ,]

Gerek ülkemizde gerekse diğer ülkelerde birçok betonarme yapıda hasarlar meydana getiren ASR, oldukça kompleks kimyasal bir reaksiyondur. Bazı çimentoların içinde fazla miktarda bulunan sodyum oksit (Na20) ve potasyum oksit (K20) gibi alkali oksitler beton gözenek suyunda çözülerek sodyum hidroksit (NaOH) ve potasyum hidroksit (KOH) oluştururlar ve aktif silis içeren agregalarla reaksiyona girerek, zamanla betonu çatlatan bir jel oluşumuna sebep olurlar. Reaksiyonun neden olduğu genleşme belli bir sınırı aştığında beton için potansiyel bir tehlike oluşturur.[A. M. NEVILLE]

Çimento, hammaddesi en kolay ve bol bulunan bir ürün olarak bilinir. Özellikle ülkemizde, hemen hemen her bölgede çimento temel hammaddesi olan kalker ve kile rastlamak mümkündür. Ancak doğada bulunan bu maddelerin hiçbiri ideal bir klinker üretimi için istenilen özelliklere uygun olmadığı gibi, hiçbir zaman sürekli bir homojen yapı göstermezler. Bilindiği gibi çimento fabrikalarında günde binlerce ton kalker ve kil kullanılır. Bu çapta bir madde akışı içinde ocaklarda seçme, ayırma ve kontrol olanakları son derece sınırlı kalır.

Ocaklardan doğrudan alınan hammaddelerde, içinde klinker üretimi için sakınca yaratabilen birçok bileşen bulunabilir. Genellikle sediman bir oluşum olan kil mineralleri içinde magnezyum oksit, sülfat, klorür, serbest silis (kuvars), sodyum ve potasyum oksitlerine rastlanabilir. Hammadde içinde fırına giren bu bileşimler klinker oluşum reaksiyonlarına katılmazlar. Ancak pişirme, öğütme ve üretilen çimentonun hidratasyonu sırasında çeşitli sakıncalar yaratırlar.

Hemen hemen bütün kil mineralleri içinde alkali oksitlerine ve klorür tuzlarına rastlanır. Bu bileşenlerin çimento içinde belli değerlerden fazla bulunması istenilmez. Hatta normal değerlerde bulunması halinde bile, özellikle ön ısıtmalı klinker üretim sistemlerinde büyük sorun yaratırlar. En uygun hammadde kullanımı halinde bile

alkali oksit ve klorür etkilerinden tam olarak kurtulmak söz konusu olmadığına göre, bu bileşenlerin zararlı etkilerinden kurtulmak için özel önlemlerin alınması gerekir.

Pratikte çimento içinde bulunan alkali oksit yüzdesi büyük önem taşımaktadır. Ülkemiz standartlarında herhangi bir sınır değer bulunmamakla beraber, ASTM standartlarında çimento içindeki toplam alkalinite yüzdesinin % (Na20+0,658 K20) 0,6 ‘dan fazla olmaması şartı bulunmaktadır. [B. Ö. ŞENSÖZ, S. YALÇN,2001]

2. ALKALİ-SİLİKA REAKSİYONU MEKANİZMASI

ASR’nin oluşabilmesi için agregada reaktif silika formları, yeterli miktarda alkali ve ortamda nem bulunmalıdır. Bu koşullardan herhangi biri olmazsa ASR nedeniyle bir genleşme de olmayacaktır. ASR basitçe iki aşamada görülebilir;

1. Alkali + Reaktif Silika > Alkali-silika jel ürünleri

2. Alkali-silika jeli + Nem > Genleşme

Reaksiyonun oluşabilmesi için çimento alkali içeriğinin “eşdeğer Na20” değeri olarak % 0,6 değerini aşması gerekir. Portland çimentosunun toplam alkali içeriği sodyum oksit eşdeğeri olarak şu ifade ile hesaplanmaktadır; [Thomas Telford Ltd.]

(Na20)e = Na20 + 0,658 K20

Çimentoda bulunan sodyum ve potasyum oksitler çimentonun hammaddelerinden (kil, kireçtaşı, şeyl vb) kaynaklanır.Ayrıca alkaliler, çimento dışında; agrega, karışım suyu, beton katkı maddeleri, buz çözücü tuzlar, zemin suyu, beton kür suyu ve endüstriyel atık suları aracılığıyla beton bünyesine girebilirler. [A.

M. NEVILLE]

Genelde sadece çimento ve çimentolanma özelliği olan malzemelerin alkalinitesi göz önüne alınmaktadır. Ancak, betona katılan kimyasal yada mineral katkılar alkali içeriyorsa gelen ilave alkali miktarı gözönüne alınır. Beton içine alkali girişi sadece çimentodan kaynaklanıyorsa alkali içeriği şu ifade ile hesaplanabilir;[

M.KALMIŞ, N.GUNGOR, S.ERIBOL] [Çimentonun alkali %] x [Çimento dozajı (kg/m3) 1 = Betondaki alkali miktarı (kg/m3)

Betonun alkalinitesi arttıkça ASR potansiyeli de artar. Alkali hidroksit çözeltisi, reaktif agregalarla kolayca reaksiyona girer. Yüksek konsantrasyonl u alkali çözeltide, silikanın kararlı formları bile güçlü silikon bağlarının kırılması nedeniyle reaksiyona girebilir. Agreganın reaktifliği arttıkça daha düşük alkalili çözeltilerde bile jel reaksiyonu oluşabilir. Silika mineralleri reaktiflikleri açısından opal, kalsedon, kristobalit, kriptokristal kuartz olarak sıralanabilir. Bu minerallerden bir veya birkaçının birarada bulunduğu kayalar arasında, opal, kalsedon, kuartz çörtleri, silisli kireçtaşları, silisli dolomitler, riyolit ve tüfleri, dazit ve tüfleri, silisli şeyller, filitler, opalli oluşumlar, çatlamış ve boşlukları dolmuş kuartzlar sayılabilir.[ Thomas Telford Ltd.]

ASR’nin genel mekanizması bilinmekle birlikte, beton üzerine yapmış olduğu etkiler henüz tam olarak açıklığa kavuşmamıştır. Orneğin çimento alkalinitesi belli bir değere erişince betonda şişme görülmekte, fakat alkalinite ile doğru orantılı olarak artmamaktadır. Buna karşılık çimento dozajının artışı, şişmenin de artmasına neden olmaktadır. ASR için mutlaka suya ihtiyaç olduğu halde, su içinde bekletilen betonlarda şişme meydana gelmemektedir. Maksimum şişme betonun doygun rutubetli atmosferde tutulması halinde görülmektedir. Reaktif agreganın inceliği reaksiyon hızını arttırmakla beraber, yüksek incelikte olan mineraller her zaman aynı derecede şişmeye neden olmamaktadır. Beton yapının poröz olması halinde, oluşan alkali silikat jeli beton boşlukları içine dolarak betonda herhangi bir şişme meydana getirmemektedir.[ B. Ö. ŞENSÖZ, S. YALÇIN,2001]

ASR’nin oluşumuna neden olan bir diğer koşul olan nem, bozulmanın ve hacim değişikliğinin şiddeti üzerinde önemli bir etkiye sahiptir. ASR, yanlızca nem varlığında gerçekleşir. Nem, alkali iyonlarının yayılmasına, oluşan jel ise su emerek şişip genişlemeye ve betonda içsel çekme gerilmelerinin doğmasına böylece agrega ile onu çevreleyen çimento harcının çatlamasına neden olurlar. (Fotoğraf 2.1.) Çatlamadan sonra ortama giren su, jelin emebileceğinden fazla olursa bir miktar jel dışarı sızar, bu durum ileri düzeyde bir hasarın kanıtıdır. Su, ASR’de iki rol üstlenmiştir, taşıyıcılığın yanısıra jelin büyümesini de sağlar. Betonun kurutulması ve ileride su ile temasının önlenmesi reaksiyonun durdurulması için etkilidir. Aksine, tekrarlı ıslanma ve kuruma, alkali iyonlarının göçünü hızlandırarak reaksiyonun şiddetini arttırır.[ Thomas Telford Ltd.]

Fotoğraf 2.1. ASRJeIinin Beton İçinde Oluşumu [ACI 221.İR State of the Report on Alcali-Agrigate Reactivity 1

ASR üzerinde beton karışım oranları, agrega boyutu, hava katkısı, mineral ve kimyasal katıkların ve ortam sıcaklığının da etkisi vardır.

Reaktif agrega/alkali oranının belirli bir değerde olması maksimum genleşmeye neden olmaktadır. Yapılan araştırmalar bu oranın 3 ile 10 arasında değiştiğini göstermekte, pik genleşmeye neden olan bu değere “pesimum oran”

denmektedir. Bu davranış, deneylerde şüpheli kumlar ve reaktif olmayan kırmataş tozu farklı oranlarda kullanılarak belirlenebilmektedir.[ Thomas Telford Ltd.]

Şekil 2.1. Silisli Agrega İçeren Bir Betonun İç Yapısı. [GLASSER,1992]

Uygulayıcılar, ASR’nin betonu kendiliğinden tahrip etmediğini doğrulamaktadırlar. Daha ziyade, ASR’ye maruz kalan beton, günden güne ortaya çıkan zararlarla daha erken yıpranarak, güçsüzleşmektedir. ASR’nin yıpratıcı kimyasal reaksiyonlarına dair bilinenler köprü tabliyelerindeki harita şeklinde ve uzunlamasına çatlaklar ile taşıyıcı kolonlardaki uzunlamasına çatiaklardır. ASR’nin sebep olduğu neden-sonuç ilişkileri, ASR’nin betonun AIDS’i “ olarak adlandırılmasına yol açmaktadır.[ T. KUENNEN]

3. ALKALİ-SİLİKA REAKSİYONUNU ETKİLEYEN FAKTÖRLER

3.1. Karışım Oranlarının Etkisi

Reaktif agrega içeren bir betonun karışım oranlarını değiştirerek betonun reaktif agrega içeriği ve hidroksil iyonu konsantrasyonu değiştirilebilir. Bu değişim aynı zamanda betonun sonuçtaki genleşme miktarını da etkiler.

Genleşmenin reaktif alkali/silis oranına bağlı olduğu Şekil 3.1.’de görülmektedir. Maksimum genleşme, reaktif alkali/silis oranının 3.5 ile 5.5 olması durumunda meydana gelmektedir. Harç ve betonların bu davranışı pratikte önemlidir.

Şekil 3.1. ReaktifSilislAlkali Oranına Göre Genleşme Miktarları.

Su altında saklanan numunelerin genleşmesi su/çimento oranına altında saklanmayan numunelerde reaksiyon, su buharının difüzyon olarak kontrol edilmektedir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.2. Alkali İçeriğinin Etkisi

bağlı iken su hızına bağlı

Betonda kullanılan çimentonun alkali içeriğinin değişmesi, betonun hidroksil iyon konsantrasyonunu, betonun alkali içeriğini ve reaktif silis/alkali oranını değiştirir. Suda bekletilen harç çubuklarında çimentonun alkali içeriğinin genleşmeye etkisi Şekil 3.2.’de görülmektedir. Çimentonun alkali miktarı arttıkça pesimum davranış eğrisi genişlemekte ve maksimum genleşme reaktif silis/alkali oranı 4.5 civarında iken meydana gelmektedir.

Benzer alkali içeriklerinde, genleşme miktarlarında önemli farklılıklar gözlemlenmiştir. Bu farklılıklar aşağıdaki faktörlere bağlı olabilir;

 

• Çimentolardan farklı hızlarda alkali açığa çıkması.

• Çimentoların sodyum/potasyum oranlarındaki değişimler.

• Farklı hızlarda dayanım kazanımı. [ K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

.kLIU h

 

Şekil 3.2. Çimentonun Alkali İçeriğinin Genleşmeye Olan Etkisi

3.3. Reaktif Agreganın Cinsinin ve Tane Büyüklüğünün Etkisi

Betonda ASR’nun oluşabilmesi için herhangi bir formda reaktif silisin bulunması gerekmektedir. Reaktif silis oldukça farkı doku ve kristal yapısı sergiler. Silisin doku farklılığı, kayaçlaşma sürecinde azalan soğuma hızına bağlıdır. Agregadaki silisli mineraller kayaç oluşum sürecinde soğuma hızına bağlı olarak amorf veya camsı (kristalleşmemiş) yapıdan kripto kristal, mikro kristal ve kristal yapıya kadar geniş bir aralığa dağılırlar. Kimi durumlarda kuvars kristallerinin oluşumu sırasında içsel gerilmeler oluşur. Bu tür kuvars mineralleri içeren agregalar reaktiftir.

Reaktivitedeki Azalmaya Göre Silis Mineralleri

Amorf silis

Opal

Stabil olmayan kristalin silis

Çört

• Kalsedon

• Silisin diğer kriptokristalin formları

• Metamorfik olarak ayrışmış ve bozulmuş kuvars

• Deforme olmuş kuvars

• Yarı kristalleşmiş kuvars

• Saf kuvars

Reaktivitedeki Azalmaya Göre Kayaçlar

• Tüfler dahil volkanik camlar

• Metakuvarsit metamorfize kumtaşları

• Granitik gnayslar

• Deforme olmuş granitik gnayslar

• Diğer silis içeren metamorfik kayaçlar

• Silisli ve mikalı şist ve filitler

• İyi kristalize olmuş volkanik kayaçlar

• Pegmatitik volkanik kayaçlar

• Silis içermeyen kayaçlar

Reaktif agreganın tane büyüklüğü de ASR sebebiyle oluşabilecek zararlar üzerinde etkilidir. Büyüklüğü 75 Mm ile 1 mm arasında değişen, hatta bazen 5 mm’ye kadar çıkabilen boyutundaki reaktif agrega kullanılması durumunda genleşmenin maksimum olduğu görülmektedir.Ancak, 75 Mm altındaki boyutlarda reaktif agreganın fazla miktarda bulunması halinde genleşme oluşmadığı halde reaksiyon delillerinin ortaya çıktığı gözlenmiştir. Reaktif agreganın boyutunun etkisi, reaktif agreganın fiziksel ve mineralojik karakterine de bağlıdır. Gözenekliliği fazla olan agreganın içine boşluk çözeltisinin girişi daha kolay olmakta ve reaksiyon alanı artmaktadır. [K. RAMYAR, H. DONMEZ, 0. ANDIÇ,2002]

3.4. Dış Alkalilerin Etkisi

Kar mücadelesinde kullanılan tuz (NaCI), deniz suyu, beton kür suyu ve endüstriyel atık suları aracılığıyla beton bünyesine dışarıdan giren alkaliler, dış alkaliler olarak adlandırılır. Özellikle geçirimli betonlarda ve/veya çatlaklar oluşmuş betonlarda dış alkalilerASR’nun neden olduğu genleşmeleri arttırır.

Deniz suyunun sertleşmiş betonda oluşan ASR genleşmelerini arttırıcı etkisi, hidrate C3A ve portlandit bileşenlerinin NaCI ile oluşan reaksiyonu sonucu 0H miktarının artması sebebiyledir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.5. Rutubetin Etkisi

Rutubet, silisin çözülmesine, alkali iyonlarının yayılmasına ve reaksiyon bölgesinde jel oluşumuna sebep olur. Oluşan jel ise su emerek şişip genişler ve betonda içsel çekme gerilmeleri oluşmasına yol açar. Araştırmalar, bağıl nem oranı %80’in üzerinde olan betonlarda ASR’nun oluştuğunu göstermektedir.

Düşük su/çimento oranlı betonun, ilave çimento, mineral katkı veya herhangi bir başka yolla beton geçirimliliği azaltılırsa; rutubetin betona girişi ve beton içinde dolaşımı azalır. Dolayısıyla beton içinde alkalilerin yayılması da azaltılmış olur.

Betonun sürekli olarak suya doygun halde oluşunun mu, yoksa sıkça kuruyup ıslanmasının mı daha çok tahribat yarattığı kesin olarak bilinmemektedir. Ancak sık kuruma-ıslanma tekrarının betonda alkali taşınmasının kolaylaşmasına ve alkalilerin kuruma bölgelerinde yoğunlaşmasına neden olduğundan bu bölgelerde reaksiyonun hızlı gelişimine yol açtığı bilinmektedir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.6. Sıcaklığın Etkisi

Sıcak iklim koşullarındaki yapılar, soğuk iklim koşullarındakilere göre ASR’na karşı daha duyarlıdır. Çünkü reaksiyonun hızı sıcaklık arttıkça artar. Sıcaklık artışı, agreganın büyük çoğunluğunda aşırı termal gerilmelere sebep olur. Bazı agregalarda yapılan araştırmalar, 132O0 0 aralığındaki ölçümlerin 38° C’dekinden farklı olduğunu göstermiştir. Yüksek ve düşük sıcaklıkların genleşmeye etkisi agregaya bağlıdır. Agregaların büyük çoğunluğu daha yüksek sıcaklıklarda daha fazla reaktiflik göstermektedir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.7. Sürüklenmiş Havanın Etkisi

Reaktif agrega içeren ancak ASR sebebiyle hasar görmeyen yapılar incelendiğinde, jelin hava boşluklarını tamamen veya kısmen doldurduğu görülmektedir. Bundan dolayı, jelin hasar görmemiş betonda hava boşluklarını doldurarak ilerlediğini ve hava sürükleyici katkı kullanımının ASR sebebiyle oluşan hasarı önleyebileceği söylenebilir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

4. ALKALİ-SİLİKA REAKSİYONUNUN BELİRTİLERİ

Betonda ASR ürünleri oluşmadıkça ASR hasarından bahsedilemez. Yapılacak dikkatli incelemelerle tespit edilebilecek ASR belirtileri; genleşme, betonda çatlaklar, yüzey birikintileri, yüzey parçalanmaları-patlamaları ve renk değişimleridir. [M.

ARSLAN 2001]

ASR varlığının en tipik göstergesi, genleşmelerle ortaya çıkan harita çatlağı tipindeki çatlak desenleridir. Fotoğraf 4.1. ASR çatlaklarının deseni, yapılarda oluşan zemin ve muhtelif yüklerin neden olduğu çatlak düzenlerinden oldukça farklıdır. [M.

ARSLAN 2001]

Şekil 4.1. ASR’nin neden olduğu harita çatlakları. [ACI 201.2R Guide to Durable

Yapılabilecek göz muayenesi ile; çatlakların konumu ve deseni, uzunlukları, genişlikleri, görünür derinlikleri, çatlakların agrega kesitinden mi yoksa çimento hamurundan mı geçtiği saptanabilir. ASR’nin oluşturduğu jelleşme, agrega taneciği içinde veya agrega taneciği çevresinde reaksiyon halkası biçiminde gelişebilir. Bulabildiği ölçüde su emerek enerjisini boşaltan bu jel, su emdikçe hacimsel olarak büyür (şişer). ASR’den kaynaklanan çekme gerilmeleri nedeni ile 3 veya 4 kollu yıldız şeklinde çatlar. Şekil 4.1. ASR jelinin su emerek şişmesi sonucu beton içinde depolanan potansiyel enerji, bu çatlamalar ile boşalır. [M. ARSLAN,2001]

Fotoğraf 4.1. ASR’den Kaynaklanan Çatlaklara İlişkin Görünüşler.

Beton çatlakları boyunca beyazdan griye kadar değişen renklerde ASR jeli yada kalsiyum karbonat tortuları görülebilir. Bu birikintilere bazen yüzey tortuları veya salgıları da denir. Çatlaklardan dışarı sızan bu maddeler, beyaz sarımtırak veya renksiz, viskoz, akışkan, mumsu, elastik yapışkan yada sert olabilirler. [M.

ARSLAN 2001]

Yüzeyde veya yüzeye çok yakın bölgelerdeki parçalanmalar, tipik bir mısır patlaması gibi davranarak beton yüzeylerinde küçük çukurlar oluşturur. Ileri yaşlarda, ASR kopmalarının kaplama betonlarında daha çok görülür. Özellikle rutubetli, ıslak kohezif zeminler üzerinde olan beton kaplamalarda, rutubet yoğunlaşması patlama türü parçalanmaları arttırır. [M. ARSLAN,2001]

Yüzeyde renk kaybı veya renklenmeler, genellikle harita çatlağı ile birlikte görülür. Koyu renkli veya kararmış bölgeler genellikle ASR’den kaynaklanmaktadır. Çatlak boyunca olan bölgelerde 2-3 mm genişlikte renk açılması, beyazlaşma, pembeleşme yada kahverengileşme görülebilir. [M. ARSLAN,2001]

AKIl .JPG

5. ASR’unu KONTROL ALTINA ALMA YÖNTEMLERİ

ASR’unu önlemenin en iyi yolu beton dökülmeden önce gerekli önlemleri almaktır. Bunun için bağlayıcı malzemelerin ve agregaların dikkatlice analiz edilmesi ve malzeme seçiminin verimliliğini ve ekonomikliğini optimize eden bir kontrol stratejisinin seçilmesi gerekir.

ASR’unu önlemek için malzeme seçiminde aşağıdaki konulara dikkat edilmelidir;

• Aktif silis içermeyen agregaların tercih edilmesi,

• Betonun alkali içeriğini sınırlamak,

• Ortamın nemini kontrol altında tutmak,

• Katkı maddesi kullanımı. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

6. ALKALİ-SİLİKA REAKTİVİTESİNİN BELİRLENMESİ

Yüksek alkali içeren betonlarda agreganın iyi bir performans gösterdiğine dair uzun süreli gözlemlere dayanan sonuçlar varsa reaktivite tespiti için ayrıca deney yapmaya gerek yoktur. Aksi halde, agreganın veya belirli agrega-kombinasyonlarının zararlı alkali-silis reaksiyonu gösterip göstermeyeceğinin tespiti için deneyler yapmak gerekmektedir. Alkali-silis reaktivitesi hakkında günümüzde hala uluslararası kabul görmüş tek bir veya birkaç standart deney yöntemi bulunmamaktadır. Ulkeler, kendilerine en uygun deney metotlarını seçerek uygulamaktadırlar.

Laboratuvar deneylerinin bazılarında reaksiyon, anormal yüksek çimento içeriği, alkali ekleme veya yüksek sıcaklıklarda test edilerek hızlandırılmaktadır. Test metotları, bu sebeple iki ana faktör göze alınarak değerlendirilmelidir. Birincisi, bu tür anormal koşullarda bazı silisli bileşenler normal koşullarda olduğundan çok farklı hızlarda reaksiyona girebilirler. İkincisi, reaksiyonun fiziksel etkileri çok farklı olabilir. Bu deneyler ancak, şantiye koşullarıyla veya normal şartlarda kürlenmiş numuneler üzerinde yapılan deneylerle karşılaştırıldığında anlamlı sonuçlara götürebilir. [ K.

RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

6.1. ASTM C 295- Agregaların Petrografik Analizi

Petrografik inceleme, minerallerin cins ve yüzdelerine göre kayacın adlandırılması işlemidir. Agregalardan alınan ince kesitlerin optik mikroskop yardımıyla incelenmesi sonucu içeriklerinde bulunan potansiyel reaktif mineral fazların (reaktif silis) teşhisi mümkündür. X-ışını yayılımı ve tarayıcı elektron mikroskobu gibi yöntemler reaktif silisin saptanmasında faydalıdır. Agregaların yanı sıra, zarar gören beton ve harç numunelerden alınan ince kesitler üzerindeki çalışmalar sonucu, meydana gelen etkinin ASR sebebiyle olup olmadığını

ek deneyler yapılması önerilir. Deney sonuçları, kullanılan kabın tipi, fitillerin bulunup bulunmayışı, çimentonun alkali içeriği, su/çimento oranı gibi faktörlerden önemli miktarda etkilenmektedir.

Bu yöntemin dezavantajları, uzun süreli olması, kür koşullarındaki farklılıklar sebebiyle değişimler gösterebilmesi ve özellikle bazı yavaş reaktif agregaların reaktivitelerinin saptanamamasıdır. Bu yöntem, ayrıca mineral ve kimyasal katkıların ASR genleşmesindeki azaltmalarını ölçmede de kullanılmaktadır. [ASTM 0 227, K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

tanımlayabilmek mümkündür. Petrografik incelemeyi yapan kişinin bu konudaki deneyimi önemli bir faktördür. ASR üzerinde kimyasal metotlar, beton veya harç numuneleri ile testler uygulamadan önce bu analizin uygulanması zaman kazandırmak ve uygulanacak metodun agrega tipine göre seçimini kolaylaştırmak bakımından önemlidir. [ASTM C- 295, K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

6.2. ASTM C 289- Kimyasal Metot

Bu yöntem çabuk ve görünürde açık sonuçlar verdiği için daha çok kullanılmaktadır. Agregayı temsil eden 25 gr ağırlığında ve 150-300 Mm’ye kırılmış numune, 25 mI 1 M sodyum hidroksit çözeltisinde 80 0 derecede 24 saat boyunca bekletilir. Daha sonra filtre edilir ve asitte titre yöntemiyle çözülmüş silis ile alkalinitedeki azalma analiz edilir. Deney üç kez tekrarlanır. Sonuçlar daha sonra Şekil 4.1. ‘deki eğride işaretlenerek kontrol edilir. Bu şekilde Rc alkalinitedeki azalmayı, Sc ise çözülmüş silisi ifade etmektedir. Eğer tüm sonuçlar eğrinin sol tarafındaki bölgede ise agrega zararsız olarak kabul edilebilir. Bu eğri, yüksek alkali içerikli harç çubuğu genleşmeleri, agregaların petrografik analizleri ve betonda kullanılan agregaların saha performansları dikkate alınarak çizilmiştir. [ASTM 0

289K. RAMYAR, H. DONMEZ, 0. ANDIÇ,2002]

Şekil 6.1. Alkalinitedeki Azalma-Çözünmüş Silis Grafiği

14
May

Agregaların Mekanik Özellikleri

1. Tane dayanımı

Agreganın tane dayanımı, alındığı kayacın cinsi ve mevcut durumunun petrografik yönden incelenmesi ile yaklaşık olarak değerlendirilebilir. TS 706’ya göre taşın suya doygun haldeki küp basınç dayanımı veya çapı yüksekliğine eşit silindir basınç dayanımı en az 1000 kgf/cm2 (98N/mm) ise mekanik özellik ile ilgili başka incelemeye gerek yoktur.

Tane dayanımı Basınç dayanımının 1000 kgf/cm2 den küçük olması halinde ve kuşkulu durumlarda agregalarda aşağıda açıklanan aşınmaya dayanıklılık deney sonuçlarına bakılır. Eğer iri agrega olarak çakıl kullanılıyor ise aşınmaya dayanıklılık deneyleri uygulanarak karar verilir.

image

2. Aşınma dayanımı (TS 699)(Los Angeles deneyi)

Bu deneyde kullanılan cihaz iki tarafı kapalı, ekseni etrafında dönebilen, iç çapı 710 mm, boyu 508 mm olan bir çelik silindirden oluşmaktadır. Silindir içinde belirli ağırlıkta ve sayıda çelik ilyeler mevcuttur. Alet 100 ve 500 devir sonunda silindirden çıkarılan numune 1,6 mm lik kare gözlü elekten elenerek, alta geçen miktarın %’si hesaplanır. Bu değer deney sonrasındaki kayıp yüzdesini ifade eder. TS 706, 100 dönme sonunda ağırlıkça %10, 500 dönme sonunda %50’den az kayıp varsa agreganın yeterli dayanıma sahip olduğu kabul edilmektedir.

3. Agregalarda dona dayanıklılık (TS 3655)

Soğuk iklimlerde üretilen betonun donma etkisi ile yüzeyinin soyulmaması ve bir bütün olarak betonun parçalanmaması istenir. Betonun dona dayanıklılığında agrega önemli rol oynar. Bu nedenle donma etkisinde kalacak betonlarda kullanılacak agreganın da dona dayanıklı olması istenir. TS 706, iri agrega olarak kırmataş kullanıldığında, taşın su emme oranının ağırlıkça %0,5’den büyük olmaması veya TS 699’a göre elde edildiği kayacın suya doygun haldeki küp

basınç dayanımı en az 1500 kgf/cm2 olması halinde, agreganın dona dayanıklı olduğunu kabul etmektedir.

4. Agregalarda dona dayanıklılık (TS 3655)

TS 3655’de üç farklı dona dayanıklılık deney yöntemi bulunmaktadır;

  1. Dona dayanıklılığın şiddetli don etkisi altında belirlenmesi (suda donma)
  2. Dona dayanıklılığın orta şiddetteki don etkisi altında belirlenmesi (havada donma)
  3. Dona dayanıklılığın kimyasal yöntemle belirlenmesi (Sodyum Sülfat ve Magnezyum Sülfat Deneyi)

IV. Agreganın içinde, betona zarar veren maddelerin belirlenmesi için yapılan deneyler(zararlı maddeler)

  1. İnce maddeler (Yıkanabilir maddeler)
  2. Organik maddeler
  3. Hafif maddeler
  4. Alkali-agrega reaksiyonuna sebep olan maddeler
14
May

Bims Isıl Davranış Testi

bims-isil

13
May

Donma ve Çözülmeye karşı Direnç

4.9.1- Kapsam
Bu deney, agreganın arka arkaya donma ve çözülme etkisine maruz bırakılması halinde gösterdiği
davranış biçimi hususunda bilgi sağlar.
Deney, 4 mm ilâ 63 mm arasında tane büyüklüğüne sahip agregalara uygulanır.
4.9.2 Prensip
Atmosfer basıncında suya batırılarak su altında tutulan ve belirli tane büyüklüğüne sahip agregalardan
oluşan deney numunesi kısımları, 10 defa donma-çözülme döngüsüne tâbi tutulur. Burada, su altında
-17,5 °C’ye soğutma ve daha sonra da yaklaşık 20 °C’deki su banyosunda çözme işlemi
gerçekleştirilir. Donma-çözülme döngülerinin tamamlanmasından sonra agregalar, çatlak oluşumu,
kütle kaybı ve varsa mukavemet değişiklikleri gibi herhangi bir değişiklik olup olmadığı hususunda
kontrol edilir.
Bu deney metodu, agrega tarafından suyun iyice absorbe edilmesi amacıyla, agreganın atmosfer
basıncında suya batırılarak su altında tutulması ve su altında dondurma işlemine tâbi tutulmasından
ibarettir.
4.9.3 Cihazlar
4.9.3.1 Havalandırmalı etüv, sıcaklığı (110 ± 5) °C’de tutulabilen.
4.9.3.2 Terazi, ±0,1 g doğrulukla tartabilen.
4.9.3.3 Düşük sıcaklık dolabı, düşey veya yatay, hava dolaşımlı. Şekil 1’de gösterildiği gibi,doğru
soğutma eğrisinin elde edilmesi şartıyla elle kontrol metodu kullanılabilir. Uyuşmazlık halinde, otomatik
kontrol kullanılmalıdır.
4.9.3.4 Metal kutular, dikişsiz çekilmiş veya kaynaklı, 0,6 mm et kalınlığına sahip korozyona dayanıklı
metalden imâl edilmiş, 2000 mL kapasiteli, 120 mm ilâ 140 mm’lik iç çap ve 170 mm ilâ 220 mm’lik iç
yüksekliğe sahip. Metal kutular, uygun kapaklarla kapatılmalıdır.
4.9.3.5 Deney elekleri, TS EN 933-2’ye uygun.
4.9.4 Numune alma
Numune alma işlemi, TS EN 932-1’e uygun olarak yapılmalıdır.
4.9.5 Deney numuneleri
4.9.5.1 Genel
Üç adet deney numunesi kullanılmalıdır.
Direnç deneyinin, donma-çözülme döngüsel yüklemesinden sonra yapılması düşünülüyorsa, bu
deney, lâboratuvar numunesinden elenerek elde edilen uygun bir agrega büyüklük sınıfı üzerinde TS
EN 1097-2’ye uygun olarak yapılmalıdır.
Bu amaçla, yedek dahil, direnç deneyi için gerekli olan kütlenin iki katı miktarda lâboratuvar numunesi
alınmalıdır. Alınan bu lâboratuvar numunesi, iki eşit kısma ayırılmalıdır. Birinci kısım, donma-çözülme
döngüsüne tâbi tutulmaksızın parçalanma ve yoğunluk deneyleri, ikinci kısım ise, donma-çözülme
döngü deneyleri için kullanılmalıdır.
78
1 – Sıcaklık, °C
2 – Alt Sınır
3 – Kontrol Eğrisi
4 – Üst Sınır
5 – Zaman, saat
Şekil 1 – Dolabın ortasına yerleştirilen dolu metal kutunun merkezindeki sıcaklık
eğrisi (referans ölçme noktası)
79
4.9.5.2 Deney numunelerinin büyüklüğü
Deney numunelerinin tane büyüklüğü, 8 mm ilâ 16 mm aralığında olmalıdır, ancak gerek duyulması
halinde, Çizelge 1’de verilen tane büyüklüklerinden herhangi biri kullanılabilir.
Üç deney numunesi kısmının her birine ait miktarlar, Çizelge 44’de belirtildiği gibi olup, izin verilebilir
sapma ±%5’tir.
Çizelge 44 – Donma-Çözülme döngü deneyi için gereken deney numunesi kısımlarının miktarları
4.9.6 Deney numunelerinin hazırlanması
Deney numuneleri yıkanmalıdır. Numuneler, (110 ± 5) °C’ta sabit kütleye kurutulmalı, ortam
sıcaklığına kadar soğumaya bırakılmalı ve hemen tartılmalıdır (M1).
Tartma işlemi, aşağıda belirtilen doğruluk seviyelerinde yapılmalıdır:
− Büyüklüğü 16 mm’ye kadar olan agregalar : ± 0,2 g
− Büyüklüğü 16 mm’nin üzerinde olan agregalar : ± 0,5 g
4.9.7 İşlem
4.9.7.1 Suda ıslatma
Hazırlanan deney numuneleri, içerisinde damıtık veya demineralize su bulunan metal kutularda (20 ±
3)°C ‘de, (24 ± 1) saat süreyle atmosfer basıncında tutulur. Su seviyesi, 24 saatlik tüm ıslatma süresi
boyunca deney numunesi kısımlarının en az 10 mm üstünde olmalıdır.
4.9.7.2 Su altında dondurma işlemi
Her bir metal kutudaki su seviyesinin, deney numunesinin en az 10 mm üzerine olup olmadığı kontrol
edilir ve kutu kapakları kapatılır. Isının mümkün mertebe her taraftan eşit şekilde alınmasını teminen,
metal kutular ile dolabın yan duvarları arasındaki mesafenin 50 mm’den az olmamasına ve kutuların
birbirine değmemesine dikkat edilerek, deney numunelerini ihtiva eden metal kutular dolaba
yerleştirilir.
Soğutulan alanın ortasında bulunan kapalı metal kutunun merkezindeki sıcaklık, referans sıcaklık
ölçme noktası olarak kullanılır ve sıcaklığın Şekil 1’de gösterilen soğutma eğrisinin sınırları içerisinde
kalması sağlanacak şekilde dolap ayarı yapılır.
Dolaptaki numuneler, aşağıda belirtilen şekilde, 10 defa donma-çözülme döngüsüne tâbi tutulur:
a) Sıcaklık, (150 ± 30) dakikada (20 ± 3) °C’den 0 (sıfır) °C’e düşürülür ve (210 ± 30) dakika süreyle 0
(sıfır) °C’de tutulur.
b) Sıcaklık, (180 ± 30) dakikada 0 (sıfır) °C’den (-17,5 ± 2,5) °C’e düşürülür ve en az 240 dakika
süreyle (-17,5 ± 2,5) °C’de tutulur.
Tatil gibi nedenlerle, donma döngüsü sırasında veya elle kontrol sırasında deneye ara verilmesi
gerekirse, metal kutular (-17,5 ± 2,5) °C’de muhafaza edilmelidir. Deneye ara verilebilecek azami süre
72 saattir.
c) Hiç bir aşamada, hava sıcaklığının, -22 °C’in altına düşmesine izin verilmemelidir.
d) Her bir donma döngüsü tamamlandıktan sonra, kutu muhtevası, yaklaşık 20 °C’deki suya batırılmak
suretiyle çözülür. Sıcaklık, (20 ± 3) °C’e ulaştığında, çözme işlemi tamamlanmış sayılmalıdır.
e) Her bir çözme aşaması tamamlandıktan sonra, kutular (20 ± 3) °C’deki suda en fazla 10 saat
süreyle tutulur. Her bir donma-çözülme döngüsü, 24 saat içinde tamamlanmalıdır.
10. döngünün tamamlanmasından sonra her iki kutunun içindeki malzeme, deney numunesini
hazırlamak için kullanılan alt elek büyüklüğünün yarısı kadar göz açıklığına sahip bir deney eleğinin
üzerine boşaltılır (meselâ, 8 mm ilâ 16 mm aralığı için 4 mm göz açıklıklı bir deney eleği üzerine
boşaltma yapılır). Deney numunesi, belirtilen elek üzerinde elle yıkanır ve elenir. Elek üzerinde kalan
agrega (110 ± 5) °C’de sabit kütleye kurutulur, daha sonra ortam sıcaklığına kadar soğutulur ve
hemen tartılır (M2).
80
4.9.8 Hesaplama ve sonuçların gösterilmesi
4.9.8.1 Kütlece yüzde madde kaybının tayini
Üç deney numunesinin elek üstü kısımları birleştirilir ve buradan elek altı miktarı hesaplanır, tartılır ve
elde edilen kütle, birleştirilen deney numunelerinin kütlece yüzdesi olarak ifade edilir.
Donma-çözülme deneyi sonucundaki kütle yüzde kaybı (F), aşağıdaki eşitlikten hesaplanır:
Burada;
M1 : Üç deney numunesinin toplam ilk kuru kütlesi, g,
M2 : Belirtilen elekte tutulan üç deney numunesinin toplam nihai kuru kütlesi, g,
F : Donma-çözülme döngüsünden sonra üç deney numunesinin kütlece yüzde kaybıdır.
4.9.8.2 Donma-çözülme döngüsünden sonra direnç kaybının tayini
Deney numunesi kısımları için, donma-çözülme döngülü ve donma-çözülme döngüsüz olarak elde
edilen direnç deneyi sonuçları arasındaki yüzdece fark, TS EN 1097-2’de belirtilen aşağıdaki işlemler
takip edilerek hesaplanır.
Yüzdece direnç kaybı, %0,1 doğrulukla, aşağıda verilen eşitlik ile hesaplanır:
Burada;
ΔSLA : Yüzdece direnç kaybı,
SLA0 : Donma-çözülme döngüsü olmaksızın deney numunesi kısmının Los Angeles katsayısı,
SLA1 : Donma-çözülme döngüsünden sonra deney numunesi kısmının Los Angeles katsayısı’dır.
Çok ağır donma-çözülme şartları için bilgi notu
Bu deney metodunun, agregaları dayanıklılık bakımından birbirlerinden yeterince ayıramadığı
gösterildiğinde, su yerine aşağıdaki maddelerin kullanılması gerekebilir:
a) %1’lik sodyum klorür (NaCl) çözeltisi veya
b) Doygun üre çözeltisi.
Bu durumda, Şekil 1’de verilen soğutma eğrisi için donma noktasının ayarlanması dışında, bu
standarddaki diğer tüm parametreler aynen geçerlidir.

13
May

Beton

Beton; dünyada sudan sonra en çok kullanılan bir malzemedir. Ekonomik olması,
bileşenlerinin doğada bol miktarda bulunabilmesi, dayanımı ve dayanıklılığının yüksek, maliyetinin
düşük olması, işlenebilirliği, yangına karşı direnci, üretiminde az enerji gereksinimi duyması, çevre
dostu, estetik yapıların inşasına olanak sağlayan mühendislik özelliklerinden ve daha birçok özelliği ile
alternatifsiz bir yapı elemanıdır. İlkel şekliyle 5000 yıl kadar önce Mısır Piramitlerinin inşasında, Çin
Seddinin yapımında, Romalılar döneminde pek çok mühendislik yapısında kullanıldığı bilinmektedir.
Bugünkü anlamda beton 1824 yılında portland çimentonun üretilmesi ve 1848’de İngilterede ilk
çimento fabrikasının kurulmasıyla kullanılmaya başlanmıştır. Daha sonra 1903 yılında Almanyada
hazır beton kullanılmaya, 1916 yılında da betonun taşınması için transmikserler kullanılmaya
başlanmıştır.

Bugün ise özellikle kimyasal ve mineral katkıların, liflerin betonda kullanılması ile yüksek
dayanımlı betonlar üretilmektedir.
Bu teknik ve ekonomik üstünlülükleri sayesinde, beton geçmişte olduğu gibi gelecek yıllarda
da inşaat sektöründe en çok tercih edilen ve vazgeçilemez malzeme olma özelliğini sürdürecektir.
Beton; çimento, agrega, su ve gerektiğinde kimyasal ve mineral katkıların uygun oranlarda
ve homojen olarak karıştırılmasıyla oluşturulan, başlangıçta plastik kıvamda olup şekil verilebilen,
zamanla çimentonun hidratasyonu ile katılaşıp sertleşerek mukavemet kazanan bir yapı malzemesidir.
İyi beton; maruz kaldığı yüklere ve çevre etkilerine karşı hizmet ömrü boyunca, fiziksel ve
kimyasal bütünlüğünü koruyabilen, dayanımı yüksek, geçirimsiz betondur. Betonda kalitenin ölçüsü,
basınç dayanımına göre değil, betonun ekonomik ömrü boyunca maruz kaldığı çevre etkilerine ve
yüklere karşı dayanıklılığıdır.
Betonun dayanım ve dayanıklılığı, bir çok parametrenin etkisi altında şekillenmektedir.
• Kullanılan malzeme (Agrega, çimento, su, kimyasal ve mineral katkılar)
• Uygun tasarım
• Su/çimento oranı
• Üretim teknolojisi
• Yerleştirme, Sıkıştırma
• Bakım (Kür)

beton-g

 

Agregalar; beton için önemli bir bileşendir ve beton içerisinde hacimsel olarak %60-75 oranında
yer işgal ederler. Agregalar,
• Doğal kum-çakıl ocaklarından yani akarsu yataklarından, alüvyon deltalarından,
• Doğal Taş Ocaklarından kayaların kırılması ve elenmesi ile elde edilirler.
Beton agregalarının,
• Tane büyüklüğü dağılımlarının (granülometri) birbirlerinin boşluklarını dolduracak şekilde
olması,
• Yassı ve uzun taneler yerine kübik ve küresel olması,
• Sert, dayanıklı ve boşluksuz olaması, kavkı gibi zayıf maddeler içermemesi,
• İçerisindeki ince malzemenin kalitesi (kil, silt, mil vb. içermemesi),
• İçerisinde organik maddeler bulundurmaması,
• Tanelerin yoğunluklarının yüksek ve su emme oranının düşük olması,
• Parçalanmaya ve aşınmaya karşı direncinin yüksek olması,
• Donma ve çözülmeye karşı direncinin yüksek olması,
• Çimento ile zararlı kimyasal reaksiyonlara girmemesi (Alkali-Silika Reaksiyonu) istenilen
özelliklerdir.
Porland çimentolar; kalker, kil, gerekiyorsa demir cevheri ve/veya kumun öğütülüp toz haline
getirilmesi ve bu malzemenin 1400-1500 °C’de döner fırınlarda pişirilerek elde edilen klinkere %4-5
oranında alçı taşı ilave edilip tekrar çok ince toz halinde öğütülmesi ile elde edilir. Bunların dışında tek
veya birkaçı bir arada olmak üzere tras, fırın curufu, uçucu kül, silis dumanı vb. katılarak katkılı
çimentolar elde edilir.
Çimentolar fiziksel, mekanik (2,7,28 günlük basınç ve eğilme dayanımları,genleşme değerleri,
priz süreleri, inceliği) ve kimyasal özellikleri yönünden uygun olmalıdır.

Betonda kullanılan karışım suyunun iki önemli işlevi vardır.
• Kuru haldeki çimento ve agregayı ıslatarak plastik hale getirmek,
• Çimento ile kimyasal reaksiyonu gerçekleştirmek ve plastik kütlenin sertleşmesini
sağlamaktır.
İçilebilir nitelikte olan tüm sular beton karışımında kullanılabilir. İçilebilir nitelikte olmayan sular
da deneyleri yapıldıktan sonra kullanılabilir. Su mümkün olduğu kadar temiz olmalı, yağmur ve kar
suları kullanılmamalı, içerisinde şeker, klor,sülfat, yağ, kil, silt ve kimyasal atıklar bulunmamalıdır.
Karışımda suyun yeteri kadar olmaması halinde çimento hidratasyonunu tam olarak
yapamayacak, agrega tanelerinin yüzeyi tam olarak ıslanmayacağından agrega tanesi ile çimento
pastası arasındaki aderans zayıf olacak ve yeterli işlenebilirlik elde edilemeyecektir.
Taze betona kıvam kazandırmak amacıyla fazladan su katılması durumunda ise betonun
bünyesinde çimento ile reaksiyona girmeyen fazla suyun bıraktığı boşluklar yalnız dayanımı
düşürmekle kalmayacak boşluklardan içeri giren klor, sülfat gibi zararlı unsurlar beton ve donatıya
zarar verecek betonun dayanıklılığını da düşecektir (Şekil-2).

Su Miktarı Mukavemet
%20 fazla olması, %30 azalmaya
%30 fazla olması, %50 azalmaya
%100 fazla olması, %80 azalmaya neden olmaktadır.

Kimyasal beton katkı maddeleri betonun fiziksel ve kimyasal özelliklerinin bazılarında
değişiklik yapmak amacıyla beton karışım suyuna belirli oranlarda katılan katkılardır.
En yaygın kullanılan kimyasal katkılar;
• Su azaltıcılar (akışkanlaştırıcılar)
• Priz geciktiriciler,
• Priz hızlandırıcılar,
• Hava sürükleyici katkılar,
• Su geçirimsizlik katkıları,
• Antifirizlerdir.

Bitmiş bir yapıda betonun kalitesini 6 aşama belirler.
• Beton bileşenlerinin kalitesi
• Betonun tasarımı
• Betonun üretimi (Ölçme ve karıştırma)
• Betonun taşınması
• Betonun yerleştirilmesi-sıkıştırılması
• Betonun bakımı-kürü
Bu aşamalardan ilk dördünü beton tesisi gerçekleştirir. Son iki aşama olan, Yerleştirme
Sıkıştırma ve Bakım-Kür işlemleri yapıda gerçekleşir. Betonun uzun yıllar boyunca maruz kaldığı
çevre etkilerine ve yüklere karşı dayanımını ve dayanıklılığını koruması için bu iki hususa da gereken
önemin gösterilmesi gerekir.
Betonun özelliklerini önemli derecede etkileyen bu yerleştirme-sıkıştırma ve ilk günlerden
itibaren kür işlemleri dikkatli ve usulüne uygun bir şekilde yapılmalıdır.
Sıkıştırma (vibrasyon), betonun kalıbın her tarafını doldurmasını ve donatının beton
tarafından iyice sarılmasını ve beton içindeki havanın dışarı çıkarılmasını sağlamak işlemidir. Sonuçta
daha yoğun, daha geçirimsiz bir beton elde edilir. Vibrasyonun şiddeti ve miktarına dikkat edilmelidir.
Aşırı vibrasyon betonda segregasyona neden olduğu gibi, eksik yapıldığında da sıkışma
gerçekleşmeyecektir.
Betonda kullanılan vibratörler,
• Dalıcı vibratörler
• Satıh vibratörleri
• Yüzey vibratörleridir.

gbelge-beton

 

Dalıcı tip vibratör ile vibrasyon yaparken aşağıdaki noktalara dikkat edilmesi gerekir.
• Kolon ve duvar gibi brüt beton yapı elemanlarında, beton uygun kıvamda (8-12cm çökme)
max. 30 cm.lik tabakalar halinde yerleştirilmeli ve sıkıştırılmalıdır.
• Vibratör, beton içinden artık hava kabarcıklarının çıkmadığı ve yüzeyinde ince bir şerbet
tabakası oluşana kadar yaklaşık 15-30 sn kadar tutulmalıdır.
• Vibratörün bir önceki tabakaya 10 cm kadar girmesi sağlanmalıdır.(Şekil-4)
• Vibratör beton içinden yavaşca çekilmelidir. (8cm/sn)
• Vibratör betona düşey olarak daldırılmalı ve daldırma aralığı vibratörlerin etki yarıçaplarına
bağlı olarak 45-50 cm.yi geçmemelidir.
• Vibratörün kalıp yüzeyine ve donatılara temas etmesinden kaçınılmalıdır.
Betonun kürü; betonun yerleştirilip sıkıştırılmasından hemen sonra başlar ve beton yeterli nem
ve sıcaklıkta tutulur. Bunun için beton, sürekli ıslak kalacak şekilde sulanmalı veya üzeri su geçirimsiz
malzemelerle örtülmeli veya kimyasal kür bileşikleri uygulanarak beton güneş ve rüzgardan
korunmalıdır. Sıcak havalarda betonun aşırı su kaybı engellenmezse çatlaklar oluşur ve en önemlisi
hidratasyon için gerekli su kaybolur.Yapılan laboratuar çalışmalarında, kuru ortamda bulunan
betonun, nemli ortamda bulunan betona göre, %50 oranında daha az dayanım kazandığı
görülmüştür(Şekil-5). Sıcaklık ve rüzgar, betonun hızla su kaybetmesine neden olmakta, ve
sonucunda betonda çatlaklar oluşarak dayanımı ve hizmet ömrünü azalmaktadır.

Betonun Kalite Kontrolü aşağıda belirtilen şekilde yapılmaktadır.
1) Yeterlilik Kontrolü:
A) Karışıma girecek malzemelerin uygunluk deneyleri
a) Çimento
b) İnce ve iri agregalar
c) Su
d) Katkı
B) Karışım Dizaynı
İstenilen beton özelliklerini sağlayan malzemelerin cins ve miktarları belirlenir.
2) Nitelik Kontrolü:
A) Üretimin kontrolü
1.maddede belirlenen malzemenin cins, miktar ve özellik olarak üretim süresince
devamlılığının sağlanması.
B) Uygunluk kontrolü
Üretilen taze betondan numuneler alınarak 28.gün sonra dayanım testleri yapılır.
3) Yapıdaki sertleşmiş betonun kalite kontrolü:
A) Tahribatlı metot (Karot)
B) Tahribatsız metot

13
May

G Belgesi İş Akışı

G Belgesi  İş Akışı

  • Yapılan anlaşmaya istinaden personelimiz işletmenizi ziyaret eder, TS EN 206-1 Hazır Beton standardını referans alarak Fabrika Üretim Kontrol Sistemi (FÜKS) dokümantasyonu hazırlanır.
  • FÜKS kapsamında hazırlanacak dokümanlar; Kalite El Kitabı, Teknik Dosya, G ürün etiketleri, Prosedürler, Talimatlar, Planlar, Listeler ve Formlardan oluşmaktadır.
  • Dokümanların hazırlanmasını takiben belgelendirme kuruluşundan denetim talep edilir. Denetim; dokümantasyon ve kalite kayıtları denetimi ile ürün denetimi olmak üzere aşamada gerçekleştirilir.
  • Dokümantasyon denetiminin başarıyla tamamlanmasını takiben denetçi refakatinde belgelendirme yapılacak beton sınıflarından numune alınır. Alınan numunelerin özel laboratuarda kırımı yapılır. Kırım sonuçları uygun çıkan ürünler için G Belgesi hazırlanır.
  • G Belgesinin geçerlilik süresi 1 yıldır. İlgili yönetmelik gereği belgelendirme yapıldıktan sonra yıl içerisinde denetçi kuruluş tarafından habersiz olarak 3 defa hazır beton numunesi alınır, teste gönderilir. Süresi dolan belge her yıl yenilenir.
13
May

G İşareti

TS EN 206-1 BETON STANDARDI
2004 yılı Mart ayından itibaren TS EN 206-1 standardı Avrupa ülkeleri ile uyum sağlama bakımından mecburi standart olarak ülkemizde yürürlüğe girmiştir.

BETON, çimento, agrega ve su ile gereğinde kimyasal ve mineral katkı maddelerinin Homojen olarak karıştırılmasıyla oluşan, çimentonun hidratasyonu ile özellikler kazanan, başlangıçta plâstik kıvamda şekil verilebilir, zamanla sertleşerek mukavemet alabilen visko elâstik bir yapı malzemesidir. Betonun kalitesi, tasarım, üretim, taşıma, yerleştirme amaçlar için üretilmiş olması gerekir. Betonların hazır beton tesislerinde üretimlerine ilişkin esaslar “TS EN 206-1”standardına uygun olmalıdır.

BETON ÜRETİMİNDE KALİTE KONTROL ESASLARI
Beton üretiminde kontrol edilmesi gereken ana parametreler; betonun bileşen malzemelerinin özellikleri ile bileşim oranları, taze ve sertleşmiş beton özellikleri ve bunların doğrulanması, beton özellikleri, taze betonun teslimi, imalât kontrol işlemleri, uygunluk kriterleri ve uygunluk değerlendirmesidir. Betonun üretimi ve kalite kontrolü o şekilde yapılmalı ki, kaliteye ilişkin özellikleri etkileyen, belirli değişimleri ortaya çıkarabilecek ve uygun düzenlemeler yapabilecek bir çalışmaya imkân tanınabilsin.

BETON MALZEMELERİNİN KALİTE KONTROL ESASLARI
Beton bileşenlerinin üretildikleri yerde, malzeme imalâtçısı tarafından yeterli kontrole tâbi tutuldukları ve bileşen malzemelerin tesliminde geçerli şartnameye uygunluğu belgelenmelidir. Bu işlemler yapılmamış ise beton üreticisi, malzemelerin ilgili standarda uygunluğunu kontrol etmelidir. Söz konusu beton üretiminde bileşen kontrolü (TS EN 206-1) sistemine uygun yapılmalıdır. Tasarlanmış betonun karışım oranları, kıvamı ve sıcaklığı belirlenmiş şartlara göre kontrol edilmelidir. Bu kontrol süreci betonun hedef noktada teslimini içermelidir. Betonun üretim özellikleri bir tablo düzeninde takip edilir. Söz konusu tabloda deney türü sütununa; başlangıç deneyleri, ince ve iri agrega ile taze betonun su içeriği, betonun klorür içeriği, kıvam, taze ve sertleşmiş betonun yoğunluğu taze betonun çimento içeriği, taze betonun mineral katkı içeriği, kimyasal katkı içeriği, s/ç oranı, taze betonun hava içeriği, taze betonun sıcaklığı ve küp numunelerle beton basınç dayanımı deneyi yazılmalıdır. Söz konusu deneylere ilişkin amaç ve uygulama zaman aralığı ise TS EN 206-1’den alınmalıdır. Yukarıda verilen kontrol kriterleri, özel bilgi ve tecrübe gerektiren durumlar için geliştirilebilir.

ARANAN ÖZELLİKLER
1. Taze betonda işlenebilirlik Taze betonun homojenliğini kaybetmeden karıştırılabilmesi, taşınması, yerleştirilmesi, sıkıştırılması ve perdahlanması özelliklerine “işlenebilirlik” denir. Taze betonda işlenebilirliğin döküm boyunca korunması gerekir. İşlenebilir bir beton da vibratör kullanılarak boşluksuz yerleştirilebilir. İşlenebilirliğin ölçüsü kıvamdır.
2. Betonun Kıvamı Kıvam betonun akıcılık derecesi olarak tanımlanır. Kıvam; betonun kullanım yerine, işlenilmesine ve şantiyede döküm yerine iletim şekline (pompa, kova…) bağlı olarak özenle seçilmesi gereken bir özelliktir. Kıvam değeri sabit tutulduğu sürece su/çimento oranı kontrol edilmiş olur. Kıvam, betonun akıcılığıyla veya kendi ağırlığı altında hareket etme kabiliyetiyle ilgilidir. Yayılma tablası deneyi, TS EN 12350 – 5 ‘e göre yapılmalıdır.
3. Taze Beton Sıcaklığı Taze betonun sıcaklığı, TS EN 206 ya göre +5° C’den az olmamalıdır.
4.En Büyük Anma Büyüklüğü , TS EN 206 (D max.) Beton içinde kullanılacak en iri agrega dane büyüklüğünün en dar kalıp boyutu, döşeme derinliği, pas payı, en sık donatı aralığı gibi unsurlarla uyumlu biçimde seçilmesi gerekir.
5.Sertleşmiş betonda basınç dayanımı (mukavemet) Betonun mekanik özelliklerden en önemli ve değeri en büyük olanı basınç dayanımıdır. Bunun yanı sıra betonun tüm olumlu nitelikleri basınç dayanımı ile paralellik gösterir. Bu nedenle betonun basınç dayanımını saptamakla betonun kalitesi ve betonun sınıfı belirlenir. Anlaşılacağı gibi yapıların dizaynında 28 günlük dayanım esas alınır. Betonun basınç dayanımını etkileyen faktörler aşağıda belirtilmiştir.
a) Çimento tipi ve miktarı Çimentonun cinsi ve dozajı (1 m3 betondaki çimento ağırlığı), beton basınç dayanımını etkiler. Yüksek dayanımlı çimentoların kullanıldığı ve çimento dozajının fazla olduğu durumda, beton kalitesinin arttığı bir yere kadar doğru olmakla beraber, beton basınç dayanımını belirleyen en önemli unsur su/çimento oranıdır.
b) Karışım suyu’nun kalitesi ve miktarı Beton üretiminde en uygun miktarlarda su kullanılmalıdır. Suyun en uygun değerden az veya fazla kullanılması beton dayanımını düşürür.
c) Sıkıştırmanın etkisi Taze betonun yerleştirildikten sonra yeterince sıkıştırılmaması, boşluk oranının artmasına ve dayanımın düşmesine neden olur. Afet Bölgelerinde Yapılacak Yapılar Hakkındaki Yönetmelikte de bahsedildiği gibi vibratörsüz beton yerleştirilmesi yapılmamalıdır. Beton her ne kadar usulüne uygun hazırlanmışsa da kalıba yerleştirilmesi sırasında vibratör kullanılmıyorsa, basınç dayanımında 30’lara varan düşmeler görülür.
d) Dış Etkiler – Kür Koşulları Betonun prizi ve sertleşmesi aşamasında çevre koşullarının etkisi çok büyüktür. Taze beton yeterli dayanımı kazanıncaya kadar, mümkün olduğunca yüksek nemli ortamda korumak gerekir. Taze beton için en olumsuz hava koşulları; yüksek sıcaklık, rüzgarlı ve kuru ortamlardır. Benzer şekilde sıfırın altındaki sıcaklıklarda önlem alınmaksızın beton dökümü sakıncalıdır. Taze betonun sıcaklığı +5 dereceden az olmamalıdır. Bu derecelerin altındaki sıcaklıklarda önlem alınması gereklidir.
e) Deney Koşulları – Örnek Şekil ve Boyutları Beton örneklerinin formu, boyutları, deneydeki yükleme hızları ve yüzey pürüzlülüğü gibi faktörler beton basınç dayanımını etkiler. Beton basınç dayanımı silindir (15/30), küp (15 cm ve 20 cm boyutlu) örnekler üzerinde belirlenir. Farklı form ve boyuttaki örneklerin basınç dayanımlarının, standart örneklerin eşdeğer dayanımlarına dönüştürülmesi gerekir. Dökülecek betonun çevreden kaynaklanan etkileri önemli olup TS EN 206-1 de 9-10-11.sayfalarda anlatılmıştır.

12
May

G Belgesi

gbelgesanasayfaG İşareti Hazır Beton işletmeleri tarafından üretilen beton ürünleri için G belgelendirmesi zorunludur. Belgelendirilecek ürünü üreten tesiste, altyapı, sistem, dokümantasyon, testler ve kalite kayıtları bazında gerekli hazırlıkların tamamlanmasını takiben işletmede gerçekleştirilecek üretim kontrol sistemi ve numune denetimlerinin bakanlık onaylı, TÜRKAK’tan akredite belgelendirme kuruluşları tarafından yapılması şarttır.

G işareti; kullanım süresi içerisinde normal kullanım koşullarında risk taşımayan veya kabul edilebilir ölçülerde risk taşıyan ve temel gerekler bakımından azami ölçüde koruma sağlayan Güvenli Ürün anlamına gelmektedir.

G (Belgesi) İşareti Nedir? 

G İşareti, Ülkemizde CE ye tabi olmayan yapı malzemelerinin piyasaya arzında zorunlu olan bir işarettir ve malzemeye, malzemeye iliştirilen bir etikete, malzemenin ambalajına veya malzemeye ait ticari belgelere iliştirilerek kullanılır.

3
Mar

Onur Beton Niksar

 

Onur Beton Niksar hazır Beton Ürün Ve G Belgelendirme Konularında Firmamızı tercih etmiştir.

G Belgesi, Ülkemizde CE ye tabi olmayan yapı malzemelerinin piyasaya arzında zorunlu olan bir işarettir ve malzemeye, malzemeye iliştirilen bir etikete, malzemenin ambalajına veya malzemeye ait ticari belgelere iliştirilerek kullanılır.

Artık betonda G Belgesi olmadan piyasaya ürün arzı söz konusu değildir; dolayısıyla betonda tek zorunlu belge G Uygunluk Belgesi olmuştur.