g belgesi nedir

13
Tem

G Belgesi Etiketi

 

Belgelendirme Sonrasında Ürüne İliştirilen G Belgesi Etiketi Bu Şekilde Olmalıdır.

g-isareti-kullanmak

13
Tem

Betonda tek zorunlu belge G Belgesi

Artık betonda G İşareti olmadan piyasaya ürün arzı söz konusu değildir; dolayısıyla betonda tek zorunlu belge G Uygunluk Belgesi olmuştur.

Bunun dışında başlangıç dönemlerinde bilgi eksikliği nedeniyle kamu ihalelerinde standarda uygunluk belgesinin isteneceği durumlarla karşılaşılması söz konusu olabilir ancak bu durumlarda ihaleyi açan kurum, standarda uygunluk belgesi veren kuruluşun ismini şart koşamaz. Danışmanlığını Yaparak firmalara verilen belgeler  Uygunluk Değerlendirme Kuruluşu Belgeleridir.

gisareti-gbelgesi

13
Tem

G Belgesi

g iareti- g belgesi
G İşareti Nedir?
G İşareti, Ülkemizde CEye tabi olmayan yapı malzemelerinin piyasaya arzında zorunlu olan bir işarettir ve malzemeye, malzemeye iliştirilen bir etikete, malzemenin ambalajına veya malzemeye ait ticari belgelere iliştirilerek kullanılır.
G ile İlgili Mevzuat Nedir?
G İşareti ile ilgili hükümleri düzenleyen Yapı Malzemelerinin Tabi Olacağı Kriterler Hakkında Yönetmelik (kısaca G İşareti Yönetmeliği), Bayındırlık ve İskân Bakanlığı tarafından 26.06.2009 tarih ve 27270 sayılı Resmi Gazete de yayınlanmıştır. Ayrıca, bu Yönetmeliğin uygulama esaslarını belirleyen Yapı Malzemelerinin Tabi Olacağı Kriterler Hakkında Yönetmeliğe Göre Uygunluk Teyit Sistemlerinin Uygulanmasına Dair Tebliğ (kısaca G Uygulama Tebliği) 06.02.2010 tarih ve 27485 sayılı Resmi Gazete de yayınlanmıştır.
Söz konusu Yönetmelik ve Tebliğ, 4703 sayılı Çerçeve Kanun ve 180 sayılı Bayındırlık ve İskân Bakanlığı Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararname ye dayanılarak hazırlanmıştır.
G İşareti Hangi Malzemeler İçin Zorunludur?
Yönetmelik te G ye tabi yapı malzemeleri, bina ve diğer inşaat mühendisliği işlerini içeren yapı işlerinde kalıcı olarak kullanılan ve CE ye tabi olmayan ürünler olarak tanımlanmaktadır.Hazır Beton ve inşaat demiri (beton çelik çubukları), bu tanıma giren yüzlerce malzeme içinde en önemlileri olarak ön plana çıkmaktadır.
G İşareti Neye İstinaden Ürüne İliştirilebilir?
Ürünün G İşareti ile beyan edilecek performans değerleri, tabi olduğu ulusal standarda (veya standardın bulunmaması durumunda ise bir ulusal teknik onaya) göre uygunluğu değerlendirilerek teyit edilir. Ulusal standarda göre yapılacak değerlendirme, Bayındırlık ve İskân Bakanlığı tarafından ilgili ürün bazında görevlendirilen Uygunluk Değerlendirme Kuruluşlarınca G Uygunluk Belgesi verilmesi şeklinde gerçekleştirilir.
13
Tem

G Belgesi Mevzuatı

G İşareti ile ilgili hükümleri düzenleyen Yapı Malzemelerinin Tabi Olacağı Kriterler Hakkında Yönetmelik (kısaca G İşareti Yönetmeliği), Bayındırlık ve İskân Bakanlığı tarafından 26.06.2009 tarih ve 27270 sayılı Resmi Gazete de yayınlanmıştır. Ayrıca, bu Yönetmeliğin uygulama esaslarını belirleyen Yapı Malzemelerinin Tabi Olacağı Kriterler Hakkında Yönetmeliğe Göre Uygunluk Teyit Sistemlerinin Uygulanmasına Dair Tebliğ (kısaca G Uygulama Tebliği) 06.02.2010 tarih ve 27485 sayılı Resmi Gazete de yayınlanmıştır.
Söz konusu Yönetmelik ve Tebliğ, 4703 sayılı Çerçeve Kanun ve 180 sayılı Bayındırlık ve İskân Bakanlığı Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararname ye dayanılarak hazırlanmıştır.
gbelgesi

Bayındırlık ve İskân Bakanlığından:

YAPI MALZEMELERİ YÖNETMELİĞİ (89/106/EEC) KAPSAMINDA

OLUP CE İŞARETİ TAŞIMASI MECBURİ OLMAYAN YAPI

MALZEMELERİNİN TÂBİ OLACAKLARI ULUSAL

DÜZENLEMELER HAKKINDA TEBLİĞ

(TEBLİĞ NO: YİG-15/2006-07)

BİRİNCİ BÖLÜM

Amaç, Kapsam, Dayanak, Tanımlar ve Uygulama Esasları

Amaç

MADDE 1 – (1) Bu Tebliğ; 8/9/2002 tarih ve 24870 sayılı Resmî Gazete’de yayımlanan Yapı Malzemeleri Yönetmeliği’nin (89/106/EEC) 7 nci maddesinde yer alan; “uyumlaştırılmış standartlarda ve Avrupa teknik onaylarında aksi yönde hükümler bulunmaması halinde, AB’yi kuran anlaşmayla tutarlı olan ulusal mevzuata göre üretilen malzemelerin piyasaya arzına izin verilir”, hükmü gereğince, 23/6/2004 tarih ve 25501 sayılı Resmî Gazete’de yayımlanan “Yapı Malzemeleri Yönetmeliği (89/106/EEC) Kapsamında, Uygulanacak Teknik Şartnamelerin Yayımlanması Hakkında Tebliğ” ile duyurulan uyumlaştırılmış standartlara ve Avrupa Teknik Onay Organizasyonu (EOTA) tarafından yayımlanan Avrupa Teknik Onaylarına (ETA) tâbi olmayan, yapı malzemelerinin, piyasaya arz edilebilmeleri için yerine getirmeleri gereken kriterlerin belirlenmesi amacıyla hazırlanmıştır.

Kapsam

MADDE 2 – (1) Bu Tebliğ, Yapı Malzemeleri Yönetmeliği (89/106/EEC) kapsamında bulunan ve gerek AB Komisyonu kararları ile ve gerekse “bina ve diğer inşaat mühendisliği işlerini içermek üzere tüm yapı işlerinde kalıcı olarak kullanılmak amacıyla üretilen” tanımı ile tutarlı olarak Bakanlıkça tespit edilen yapı malzemelerini kapsar.

Dayanak

MADDE 3 – (1) Bu Tebliğ, 4703 sayılı Ürünlere İlişkin Teknik Mevzuatın Hazırlanması ve Uygulanmasına dair Kanun’a ve Bayındırlık ve İskân Bakanlığınca yürürlüğe konulan Yapı Malzemeleri Yönetmeliği’ne (89/106/EEC) dayanılarak hazırlanmıştır.

Tanımlar

MADDE 4 – (1) Bu Tebliğin uygulanmasında Yapı Malzemeleri Yönetmeliğinde (89/106/EEC) belirtilen tanımlarla birlikte aşağıdaki tanımlar geçerlidir. Bu Tebliğde geçen;

a) Güvenli Ürün: Kullanım süresi içinde, normal kullanım koşullarında risk taşımayan veya kabul edilebilir ölçülerde risk taşıyan ve temel gerekler bakımından azami ölçüde koruma sağlayan ürünü,

b) Uygunluk değerlendirmesi/teyidi: Yapı malzemesinin Yapı Malzemeleri Yönetmeliğine ve bu Tebliğde atıfta bulunulan ulusal standartlara uygunluğunun test edilmesi, muayene edilmesi ve/veya belgelendirilmesine ilişkin her türlü faaliyeti,

c) Ulusal Standart: Üzerinde mutabakat sağlanmış olan, Türk Standartları Enstitüsü tarafından yayımlanan, mevcut şartlar altında en uygun seviyede bir düzen kurulmasını amaçlayan, ortak ve tekrar eden kullanımlar için ürünün özellikleri, işleme ve üretim yöntemleri, bunların ilgili terminoloji, sembol, ambalajlama, işaretleme, etiketleme ve uygunluk değerlendirmesi işlemleri hususlarından biri veya birkaçını belirten ve uyulması ihtiyari olan düzenlemeyi,

ç) Müsteşarlık: Dış Ticaret Müsteşarlığını

d) Komisyon: AB Komisyonunu

ifade eder.

Uygulama esasları

MADDE 5 – (1) Yapı Malzemeleri Yönetmeliği (89/106/EEC) kapsamına giren malzemeler arasından Ek-2 ile tespit edilenlerin, piyasaya arz edilebilmeleri için “güvenli” olduklarının teyit edilmesi halinde Ek-1’de bir örneği verilen “G” işareti ile beyan edilmesi gerekir.

(2) Ek 2’de verilen Ulusal Standartların ihtiva ettiği ürün karakteristiklerinden hangilerinin doğrudan ürün güvenliğine ilişkin olduğu, 16/7/2004 tarih ve 25524 sayılı Resmî Gazete’de yayımlanan Yapı Malzemeleri Teknik Komitesinin Oluşumu ve Görevlerine Dair Tebliğ’e istinaden kurulan teknik alt komiteler tarafından belirlenir. TSE tarafından standartlara ek olarak yayımlanır. G işareti belirlenen bu kriterlere göre ürüne iliştirilir.

(3) G işareti, malzemelerin, Ek-2 ile listelenen ulusal standartlara uygun olarak üretildiğini, Yönetmelik dördüncü bölümde yer alan uygunluk değerlendirme prosedürlerinden ilgili olanına göre teyit edilerek, Yönetmeliğin bütün hükümlerini karşıladığını gösterir.

(4) Madde 8’de belirtildiği üzere, AB ile Türkiye arasında düzenlenmemiş alandaki karşılıklı tanıma hükmü gereği AB üyesi ülkelerden gelen bu Tebliğ kapsamındaki yapı malzemelerinin karşılıklı tanıma prensibleri çerçevesinde piyasaya arzı engellenemez.

(5) Bu tebliğ Ek-2 ile tespit edilen malzemelerden herhangi birisini kapsayan bir uyumlaştırılmış standardın yayımı halinde, Yapı Malzemeleri Yönetmeliği (89/106/EEC) Kapsamında, Uygulanacak Teknik Şartnamelerin Yayımlanması Hakkında Tebliğ Eki listede belirtilen mecburi uygulama tarihi itibariyle ilgili ürün G işaretlemesine tâbi ulusal standartlar listesinden çıkar. Yılda en az bir kere olmak üzere bu tebliğ Ek-2 liste güncellenerek yapılan revizyonun, “Teknik Mevzuatın ve Standartların Türkiye ile Avrupa Birliği Arasında Bildirimine Dair Yönetmelik” kapsamında bildirimi yapılır. Herhangi bir malzeme aynı anda her iki işareti birden taşıyamaz.

İKİNCİ BÖLÜM

Ulusal Standartlar, G İşareti, Karşılıklı Tanıma Hükmü

Ulusal standartlar

MADDE6 – (1) Yapı Malzemeleri Yönetmeliği Madde 6’da zikredilen teknik şartnamelere tâbi olan ürünlerin piyasaya arz edilebilmeleri için CE işareti taşıması mecburidir. Söz konusu teknik şartnamelere tâbi olmayan, ancak hakkında bir ulusal standart bulunan ürünlerin piyasaya arz edilmesine ise, uyumlaştırılmış standartlarda ve Avrupa Teknik Onaylarında aksi yönde bir hüküm bulunmaması halinde izin verilir. Ancak, söz konusu ulusal standartlara göre üretilerek piyasaya arz edilen bir yapı malzemesinin, Yönetmelik Ek-III – 4.3’te belirtilen dokümanlardan uygulanabilir olanları beraberinde bulundurması gerekir.

(2) Avrupa Birliğine üye bir devlette yasal olarak üretilmiş ve/veya yasal olarak serbest dolaşıma girmiş ürünlere Madde 8 hükümleri uygulanır.

G İşareti

MADDE 7 – (1) Madde 6’da belirtilen ulusal standartlardan, bu Tebliğ Ek-2’de listelenenlere tâbi olan yapı malzemelerinin, öngörülen uygunluk teyit sistemi çerçevesinde, Bakanlığın bu amaçla görevlendireceği ve ayrı bir Tebliğ ile duyuracağı uygunluk değerlendirmesi kuruluşlarının yapacağı teyit ile Yapı Malzemeleri Yönetmeliği Dördüncü Bölümde belirlenen şartlara göre, piyasaya arz edilebilmesi için, bir örneği Ek-1’de verilen “G” işaretinin yanısıra Yönetmelik Ek-III.4.2 ile belirtilen hususları da Madde 6’ya ek olarak beraberinde bulundurması mecburidir. “G” işareti Yapı Malzemeleri Yönetmeliği Madde 12 ile işaret edilen esaslara tâbidir.

(2) Bu Tebliğ Ek-2 ile listelenen ulusal standartlar ve bunlara ileride dahil edilecek veya çıkartılacak standartlar ile bunlara ilişkin olarak hangi uygunluk teyit sisteminin uygulanacağının belirlenmesi 16/7/2004 tarih ve 25524 sayılı Resmî Gazete’de yayımlanan “Yapı Malzemeleri Teknik Komitesinin Oluşumu ve Görevlerine Dair Tebliğ” ile öngörülen Yapı Malzemeleri Teknik Komitesi’nin kararları esas alınarak Bakanlıkça belirlenir.

(3) AB’yi kuran Anlaşmayla tutarlı olarak AB Üyesi bir ülke ulusal mevzuatına göre üretilen malzemelerin, Ek-2 de verilen standartlardaki asgari şartları sağlaması durumunda, piyasaya arzına izin verilir. Bu amaçla bir AB üyesi ülkede, 9 uncu maddenin 2 nci fıkrasında belirtilen prosedür çerçevesinde verilen raporlar ve uygunluk teyitleri ile asgari şartların sağlandığı kabul edilir.

(4) İthal ürünler Üçüncü bir ülkeden gelmeleri halinde, 9 uncu maddenin 1 inci fıkrasında belirlenen kuruluşlar tarafından uygunlukları teyit edildikten sonra piyasaya arz edilebilir.

Karşılıklı tanıma hükmü

MADDE8 – (1) Bu tebliğin işaretleme ile ilgili hükümleri AB’ye üye bir devlette yasal olarak üretilmiş ve/veya yasal olarak serbest dolaşıma girmiş ürünlere uygulanamaz.

(2) Birinci fıkrada belirtilen ürünün bu mevzuatta aranan koruma düzeyini sağlamadığı yönünde bir kanıta sahip olması halinde Bakanlık aşağıda belirtilen koşulların yerine getirilmesini müteakip, 4703 sayılı Kanun hükümleri çerçevesinde, ürünün piyasaya arzını engelleyebilir ve/veya piyasaya arz edilmiş ise ürünü toplatabilir.

(3) Bakanlık;

a) İthalatçı ve ana dağıtıcıyı ulusal standardın hangi karakteristiklerinin söz konusu ürünün piyasaya arzını engellediği hakkında yazılı olarak bilgilendirir,

b) Mevcut ilgili tüm bilimsel verilere dayanarak, bahse konu standart karakteristiğinin uygulanmasının kamu yararına olduğu ve daha az sınırlayıcı önlemlerin uygulanamayacağı hakkında meşru gerekçelerin varlığını kanıtlar,

c) İthalatçı ve ana dağıtıcıyı, piyasaya arzın kısıtlanması önlemi uygulamaya konulmadan en az yirmi iş günü önce görüş vermeye davet eder,

ç) Nihai kararını alırken İthalatçı ve ana dağıtıcının görüşlerini dikkate alır ve,

d) Aldığı önlemler hakkında İthalatçı ve ana dağıtıcıyı başvurabileceği itiraz yollarını da belirterek bilgilendirir.

ÜÇÜNCÜ BÖLÜM

Uygunluk Teyidi ve Piyasa Gözetim ve Denetimi

Uygunluk teyidi

MADDE 9 – (1) Ek-2 liste ile belirlenen ulusal standartlara tabi ürünlerin uygunluk teyidi, 16/7/2004 tarih ve 25524 sayılı Resmî Gazete yayımlanan Tebliğ ile değişik, 31/8/2003 tarih ve 25215 sayılı Resmî Gazete’de yayımlanan Yapı Malzemeleri İçin Onaylanmış Kuruluşların Görevlendirilmesinde Esas Alınan Temel Kriterlere Dair Tebliğ kapsamında yapılacak başvuruların değerlendirilmesine göre Bakanlıkça yayımlanacak bir Tebliğ ile görevlendirildiği duyurulacak olan Uygunluk Değerlendirme Kuruluşları tarafından gerçekleştirilir.

(2) Ek–2 liste kapsamındaki yapı malzemeleri ile ilgili olarak, bir AB üyesi ülkedeki bir uygunluk değerlendirme kuruluşu tarafından, Türkiye’de yürürlükte olan metotlara veya eşdeğer sayılan diğer metotlara uygun olarak yapılan deney ve muayenelerden geçen malzemenin, talep edilmesi halinde, Yapı Malzemesi Yönetmeliği hükümlerini karşıladığı kabul edilir.

(3) İhraç edilecek bir ürün için hedef AB üyesi ülkede yürürlükte bulunan kurallara göre deney ve muayeneleri yürütmek üzere onay vermek istediği kuruluşu, Bakanlık, Müsteşarlık aracılığıyla, söz konusu ülkeye bildirir. Ülkeyle yapılacak bilgi alışverişi Müsteşarlık aracılığıyla sağlanır. Söz konusu bilgi alışverişinin tamamlanmasından sonra, belirlenen kuruluş, Bakanlık tarafından onaylanır. Şüpheye düşülmesi halinde, kanıt göstermek suretiyle, Bakanlık, Müsteşarlık aracılığıyla Komisyonu haberdar eder.

(4) Türkiye’de veya ihracatçı üye devlette kabul edilmiş prosedürler çerçevesinde yapılmış geçerli uygunluk değerlendirmesi işlemleri tekrarlanmaz.

(5) Bu uygunluk değerlendirme işlemleri, ihracatçı üye devletin yetkili makamlarının yaptığı kontroller olabileceği gibi, bu ülkede yapılan teknik veya bilimsel analizler ile muayene ve test sonuçları da olabilir.

(6) Bakanlık, uygunluk değerlendirmesinde mükerrerliği önlemek amacıyla, teknik ve bilimsel analizler ile testlerin;

a) ihracatçı üye devletin yetkili makamlarınca onaylanmış veya,

b) Türk Akreditasyon Kurumu veya Avrupa Akreditasyon Birliği çatısı altında karşılıklı tanıma anlaşması imzalamış bir akreditasyon kuruluşu tarafından akredite edilmiş veya,

c) yeterliliği ve bağımsızlığı kendisince kabul edilmiş,

bir uygunluk değerlendirme kuruluşunca yapılmış olması halinde, ithalatçı veya ana dağıtıcıdan söz konusu analiz ve testlerin tekrarını istemez.

(7) Kontrollerin yapıldığına ve teknik veya bilimsel raporlara dair belgeler, ithalatçı veya ana dağıtıcının yanısıra, ihracatçı üye devletin yetkili kuruluşlarından da temin edilebilir.

Piyasa gözetim ve denetimi

MADDE 10 – (1) “G” işareti ile piyasaya arz edilen ürünlerin Piyasa Gözetim ve Denetiminin yerine getirilmesinde, 23/6/2004 tarih ve 25501 sayılı Resmî Gazete’de yayımlanan “Yapı Malzemelerinin Piyasa Gözetimi ve Denetimine İlişkin Usul ve Esaslar Hakkında Tebliğ” hükümleri geçerlidir. Ek-2’de belirtilen standartlar kapsamındaki ürünlerin G işareti taşıması halinde, söz konusu Tebliğ Madde 6/a da istenen belgeleri karşıladığı kabul edilir. Ek-2 dışında kalan malzemeler için de madde 6/b ye göre değerlendirme yapılır.

(2) Bakanlık, bir ürünün eş değer koruma düzeyini taşımadığı ya da riskli olduğu yönünde bir şüphe duyduğu takdirde, gerekli bilgileri sağlamak üzere, değerlendirmeye başlamadan önce ürünün ithalatçısı veya ana dağıtıcısıyla temasa geçer.

(3) İthalatçı veya ana dağıtıcı, ürünün uygunluğunu gösteren teknik bilgi ve belgeleri talebi halinde Bakanlığa sunar. Bu bilgi ve belgeler, diğerlerinin yanısıra, ihracatçı üye devlet makamlarının vermiş olduğu yazılı bir onay olabileceği gibi, bu devletin ulusal mevzuatının ilgili hükümleri veya referans numaraları da olabilir.

(4) Bakanlık, üçüncü fıkrada belirtilen belgeler kendisince anlaşılamayacak, çevirisi güç ve mali açıdan külfetli yabancı bir dilde kaleme alınmış ve Türkçe çevirisi ürünün eş değer koruma düzeyini sağlayıp sağlamadığının değerlendirilmesinde mutlaka gerekli ise, zikredilen belgelerin istenen bölümlerini açıkça belirterek, tercümesini talep edebilir. Bakanlık, ithalatçı veya ana dağıtıcının kendisine sağladığı tercüme edilmiş metinleri kabul eder. Ancak, Bakanlık, ilgili kanun hükümleri gerektiriyorsa veya bu belgelerin çevirisinin güvenilirliğinden şüphe duyuyorsa noter veya başka bir yetkili merci tasdikli tercüme talep edebilir.

(5) Bakanlık, ithalatçı veya ana dağıtıcıdan, gerektiğinde ürünün bir örneğini veya ürünün miktar ve taşıdığı potansiyel risklerle orantılı olmak kaydıyla birden fazla örneğini talep edebilir.

(6) Bakanlık, temasa geçtiği ithalatçı veya ana dağıtıcıya, gerekli bilgi ve belgeleri temin etmesi, gerekiyorsa tercüme ettirmesi ve numunenin teslim edilmesi için en az yirmi iş günü süre tanır. Bu süre, 4703 sayılı Kanun hükümlerinin gerektirdiği acil önlemlerde dikkate alınmayabilir.

Yürürlük

MADDE 11 – (1) Bu Tebliğ, 1/1/2008 tarihinden itibaren mecburi olmak üzere yayımı tarihinde yürürlüğe girer.

(2) Bu Tebliğin mecburi uygulanmadığı süre zarfında, Ek-2 ile belirlenen ulusal standartlara tabi ürünler, TSE işareti veya Madde 8’e göre görevlendirilecek olan Uygunluk Değerlendirme Kuruluşlarınca verilen “G” uygunluk belgesine istinaden iliştirilen “G” işaretini taşımak suretiyle piyasaya arz edilebilirler.

Yürütme

MADDE 12 – (1) Bu Tebliğ hükümlerini Bayındırlık ve İskân Bakanı yürütür.

13
Tem

G İşareti, G Belgesi Faydaları

G İşareti, G Belgesi Faydaları:
– Ürünün iç piyasaya herhangi bir yaptırım olmadan sunulmasını sağlar,
– Ürünlerin güvenlik ve sağlık açısından temel gereklere uymasını sağlar,
– Ürünün kullanıcı açısından daha güvenli olmasını, hasar ve sorumluluk davalarının azalmasını sağlar,
– Ürün maliyetlerini düşürür,
– İşletme verimliliğinin, pazar payının ve rekabet gücünün artmasına katkıda bulunur,
– İzin ve yetki belgelerinin alınmasını kolaylaştırır.

beton g belgesi

13
Tem

G Belgesi Nedir?

g-belgesi“G İşareti”, ülkemizde “CE İşaretine tabi olmayan” Yapı Malzemelerinin piyasaya arzında zorunlu olan bir belgedir. Yapı Malzemelerinin, ulusal teknik şartnamelere uygun olarak üretildiğinin, uygunluk teyit sistemlerinden ilgili olanına göre değerlendirilerek, ilgili yönetmeliğin bütün hükümlerini karşıladığını ifade etmek üzere malzemeye, malzemeye iliştirilecek etiket üzerine, ambalaja veya ilgili ticari dokümanlara iliştirilerek kullanılır.

G İşareti Ürüne Nasıl İliştirilebilir? Ürünün G İşareti ile beyan edilecek performans değerleri, tabi olduğu ulusal standarda (veya standardın bulunmaması durumunda ise bir ulusal teknik onaya) göre uygunluğu değerlendirilerek teyit edilir.
Ulusal standarda göre yapılacak değerlendirme, Çevre ve Şehircilik Bakanlığı tarafından ilgili ürün bazında görevlendirilen Uygunluk Değerlendirme Kuruluşlarınca “G Uygunluk Belgesi” verilmesi şeklinde gerçekleştirilir.
G İşareti Hangi Malzemeler İçin Zorunludur?
Yönetmelikte G İşaretine tabi yapı malzemeleri, bina ve diğer inşaat mühendisliği işlerini içeren yapı işlerinde kalıcı olarak kullanılan ve “CE’ ye tabi olmayan ürünler” olarak tanımlanmaktadır.
Beton ve inşaat demiri, bu tanıma giren yüzlerce malzeme içinde en önemlileri olarak ön plana çıkmaktadır.
Uygunluk onay düzeylerine göre Üretici ve Uygunluk Değerlendirme Kuruluşunun görevleri aşağıdaki tabloda gösterilmektedir.
g-belgesi-2
factoryBetonda G Uygunluk Belgesi için Gerekli Şartlar Nelerdir? Hazır Beton, TS EN 206-1 standardı kapsamında “G Uygunluk Belgesi”ne tabidir. G İşareti Yönetmeliğine göre betonun uygunluk teyit sistemi “1+”dır ve bu tam ürün belgelendirmesini gerektirmektedir. 1+ uygunluk teyit sistemine göre hazır beton üreticisinin ve uygunluk değerlendirme kuruluşu’ nun sorumlulukları aşağıdaki gibidir:
Hazır beton üreticisinin TS EN 206-1 standardı kapsamında kuracağı Fabrika Üretim Kontrol Sistemi, Uygunluk Değerlendirme Kuruluşu tarafından ilk sistem denetimine tabi tutulur ve her bir beton sınıfından, başlangıç tip testi için numune alınır. Eğer tesisin uygunsuzluğu yoksa veya tespit edilen uygunsuzluklar belirtilen sürede giderilmiş ve test sonuçları da uygun ise o hazır beton tesisi için “G Uygunluk Belgesi” düzenlenir. Düzenlenen G Uygunluk Belgesi bir yıl geçerlilik süresine sahiptir ve yılda bir sistem denetiminden geçirilerek geçerlilik süresi uzatılabilir.Ayrıca G Belgelendirmesinin en önemli hususlarından biri olan habersiz ürün denetimleri, belgelendirme sonrası yıl içinde her bir üretim tesisinde, yılda en az üç defa yapılır. Tesis ve ürün denetimlerinde başarılı olan işletmelerin belge geçerlilik süreleri birer yıl halinde uzatılır.

G Belgelendirme Hizmetlerinin İş Akışı

  • Hizmet sözleşmemizin onaylanmasını takiben firmamız personeli işletmenizi ziyaret eder, TS EN 206-1 Hazır Beton standardını referans alarak Fabrika Üretim Kontrol Sistemi (FÜKS) dokümantasyonu hazırlanır.
  • FÜKS kapsamında hazırlanacak dokümanlar; Kalite El Kitabı, Teknik Dosya, G ürün etiketleri, Prosedürler, Talimatlar, Planlar, Listeler ve Formlardan oluşmaktadır.
  • Dokümanların hazırlanmasını takiben belgelendirme kuruluşundan denetim talep edilir. Denetim; dokümantasyon ve kalite kayıtları denetimi ile ürün denetimi olmak üzere aşamada gerçekleştirilir.
  • Dokümantasyon denetiminin başarıyla tamamlanmasını takiben denetçi refakatinde belgelendirme yapılacak beton sınıflarından numune alınır. Alınan numunelerin özel laboratuarda kırımı yapılır. Kırım sonuçları uygun çıkan ürünler için G Belgesi hazırlanır.
  • G Belgesinin geçerlilik süresi 1 yıldır. İlgili yönetmelik gereği belgelendirme yapıldıktan sonra yıl içerisinde denetçi kuruluş tarafından habersiz olarak 3 defa hazır beton numunesi alınır, teste gönderilir. Süresi dolan belge her yıl yenilenir.

Belgelendirme ve Danışmanlık Hizmetleri için 0532 179 87 70 numaralı telefondan ulaşabilirsiniz.

14
May

Agrega Deneyleri

agrega-deneyleri

agrega deneyleri

Kaba ve İnce Agrega Özgül Ağırlık ve Absorbsiyon Deneyi:

–              Özgül Ağırlık: Belli hacim ve sıcaklıktaki bir malzemenin havadaki ağırlığının, aynı hacim ve sıcaklıktaki damıtık suyun havadaki ağırlığına oranıdır.

–              Doygun, Yüzey Kuru Agrega: Gözenekleri su ile dolu fakat yüzeyi kuru olan agregadır.

–              Absorbsiyon Yüzdesi:Doygun, yüzey kuru haldeki  agreganın  kuru agregaya göre  ihtiva ettiği su yüzdesidir.

–              Rutubet Yüzdesi: Islak bir agreganın kum ağırlığına göre ihtiva ettiği su yüzdesidir.

Özgül ağırlık ve absorbsiyon deneyleri kaba ve İnce agregada ayrı ayrı yapılır.  

AGREGA ve KUM ÖZGÜL AĞIRLIĞININ BULUNMASI
1—GİRİŞ:
Bu deney metottan, iri malzemenin özgül ağırlığının ve piknometre yardımı
ile ince malzemenin özgül ağırlığının bulunmasını kapsar. Toprak, 4.75 mm’den
daha büyük danelerden oluşuyorsa, “İri Agreganın özgül Ağırlığı ve Absorpsiyonunun Bulunması” deneyindeki metot uygulanır. Toprağın, hem 4.75mm’den büyük hem de küçük taneleri İçermesi durumunda, numune 4.75mm elekten ikiye ayrılır ve her bir kısmın özgül ağırlığı, uygun deney metodu ile bulunur.   Numunenin özgül ağırlığı, İnce ve iri kısmın bulunan özgül ağırlıklarının ağırlıklı ortalaması
alınarak hesaplanır. 

                                      P     (100-P)
 Gort    =           100.G1    100 . G2

Gort =4.75 mm’den büyük ve daha küçük daneler içeren toprağın, ağırlıklı özgül ağırlık ortalaması.
P = Numunenin 4.75 mm elek üzerinde kalan %’si.
G1 = Numunenin 4.75 mm elek üzerinde kalan kısmının zahiri özgül ağırlığı.
G2 = Numunenin 4.75 mm elekten geçen kısmının özgül ağırlığı.
Özgül ağırlık değeri hidrometre deneyinin hesaplamalarında kullanılacaksa,
deney 2.00 mm elekten geçen malzeme ile yapılır.
2 —  İRİ MALZEMENİN ÖZGÜL AĞIRLIĞININ BULUNMASI:
2.1 — KAPSAM :
Bu deney metodu, iri malzemenin absorpsiyonunun ve özgül ağırlığının bulunmasını kapsar, özgül ağırlık, hacim özgül ağırlığı, doygun yüzey kuru hacim Özgül ağırlığı veya zahiri özgül ağırlık olarak verilebilir. Bu metot, hafif agregalar için kullanılmaz.
2.2  — METODUN ÖZETİ:

   Agrega numunesi, boşluktan su İle dolana kadar yaklaşık 15 saat suda bekletildikten sonra yüzeyi kurutularak tartılır. Bu numune tel sepet içerisinde suya batırılarak tartılır. Son olarak numune 110 + 5°C fırında kurutulur ve 3. kez tartılır. Bu ağırlıklar ve metotta verilen bağıntılar kullanılarak, öç değişik özgül ağırlık ve absorpsiyon hesaplanabilir.

2.3  — DENEYİN ÖNEMİ ve KULLANIMI :
2.3.1 — Mutlak hacim esasına göre oranları belirlenen veya analiz edilen çimentolu, bitümlü veya diğer karışımlardaki agrega hacminin bulunması için genellikle hacim özgül ağırlık kullanılır. Hacim özgül ağırlığı, agrega birim ağırlığının ve boşluklarının bulunması için de kullanılabilir. Eğer agrega yaş İse yani absorpsiyonunu tamamlamışsa , doygun yüzey kuru hacim özgül ağırlık kullanılır. Tersi
durumunda, agrega kuru ise veya kuru kabul edilmişse, hacim özgül ağırlık kullanılır.
2.3.2  — Zahiri özgül ağırlık, boşlukları tamamen su ile dolu malzemenin yoğunluğunu bulmaya yarar.
2.3.3  — Absorpsiyon değerleri, danecikler arasına suyun girmesinden dolayı, agrega ağırlığında oluşan değişikliği hesaplayabilmek için kullanılır. Bunun için kuru agrega yaklaşık 15 saat suda bekletildikten sonra, absorpsiyonu bulunur. Su içerisinde bulunan, ya da yüzeyinde serbest su bulunduran agregalardaki serbest su yüzdesi, toplam su yüzdesinden absorpsiyon yüzdesini çıkararak bulunur.
2.3.4  — Hafif agregalardaki boşluklar, 15 saat bekletme sonunda tamamen suyla doymayabilir. Hatta birkaç gün bekletildiğinde bile absorpsiyonunu tamamlamayabilir. Bu yüzden, bu deney metodu hafif agregalara uygulanmaz.

2.4 — TANIMLAR :

2.4.1 — Özgül Ağırlık : Belli sıcaklıkta ve belli hacimdeki bir malzemenin havadaki ağırlığının, aynı sıcaklık ve hacimdeki, havası alınmış saf suyun havadaki ağırlığına oranıdır
2.4.2 — 
Hacim özgül Ağırlığı: Daneler arasındaki değil, sadece daneler içindeki tüm boşlukları kapsayarak, belli bir sıcaklık ve birim hacimdeki agreganın havadaki ağırlığının, aynı sıcaklık ve hacimdeki havası alınmış saf suyun havadaki ağırlığına oranıdır.
2.4.3 — 
Hacim özgül Ağırlığı: Daneler arasındaki değil, sadece daneler içindeki tüm boşlukları kapsayarak, belli bir sıcaklık ve birim hacimdeki agreganın havadaki ağırlığının, aynı sıcaklık ve hacimdeki havası alınmış saf suyun havadaki ağırlığına oranıdır.
2.4.4 — 
Doygun Yüzey Kuru Hacim özgül Ağırlığı:
 Agrega yaklaşık 15 saat suda bekletilip, daneler içindeki boşluklar tamamen suyla dolduktan sonra belli bir sıcaklıkta ve birim hacimdeki agreganın havadaki ağırlığının, aynı sıcaklık ve hacimdeki havası alınmış saf suyun havadaki ağırlığına oranıdır.

2.4.5 — Zahiri özgül Ağırlık : Belli sıcaklık ve birim hacimdeki geçirimsiz agrega numunesinin havadaki ağırlığının, aynı sıcaklık ve hacimdeki havası alın­mış saf suyun havadaki ağırlığına oranıdır.

2.4.6 — Absorpsiyon : Dane yüzeylerini birbirine bağlayan suyun dışında, malzeme içerisindeki boşluklara suyun girmesinden dolayı agrega ağırlığındaki artış olup, kuru ağırlığın yüzdesi olarak ifade edilir. 110 + 5°C etüvde suyu uzaklaşana kadar bekletilen agrega, kuru kabul edilir.

2.5 — KULLANILAN ALETLER :
2.5.1 — Terazi: 2 – 5 Kg arası kapasitede ve 1 g duyarlılıkta bir terazi. Terazinin tabla veya kefe kısmında, numuneyi su içerisinde tartmayı sağlayacak, tel sepet şeklinde bir düzenek olmalıdır.
2.5.2 — 
Tel Sepet: Tel açıklığı 3.35 mm veya daha küçük olan, eni ve yük-sekliği yaklaşık aynı, 4-7 litre arası kapasitede bir sepet. Bu sepet suya batırıldığında içinde hava kabarcıkları kalmamalıdır.
2.5.3 — 
Su Tankı: Teraziye asılı tel sepet ve içindeki numuneyi batırmak için, numune yüzeyini örtecek kadar su doldurulabilen ve sızdırmaz bir tank.
2.5.4 — 
Elekler: 4.75 mm elek ve istenirse diğer elekler.

2.6 — NUMUNENİN HAZIRLANIŞI:
2.6.1 —Dörtleme veya bölgeç ile uygun şekilde hazırlanan agrega numu­nesi 4.75 mm elekten ikiye ayrılır ve 4.75 mm elek üzerinde kalan kısım yıkana­rak temizlenir.
2.6.3 — Numune iki veya daha fazla fraksiyon halinde deneye alınmışsa, bu metottaki hesaplamalar İçin, ayırma eleklerini de kapsayacak şekilde elek analizi yapılır. Her bir fraksiyondaki malzeme yüzdesi hesaplanırken, 4.75 mm elekten geçen kısım yok kabul edilerek, gradasyonda  bir düzeltme yapılmalıdır.

2.7 — DENEYİN YAPILIŞI:
2.7.1 —Numune, 110 + 5°C fırında sabit ağırlığa gelinceye kadar kurutulur. Boyutu 37.5 mm veya daha küçük olan agregalar İçin 1-3 saat,daha büyükler içinse dokunabilecek sıcaklığa kadar oda sıcaklığında soğutulur. Daha sonra bu numune, oda sıcaklığındaki su içerisinde 15-19 saat bekletilir.
2.7.2 — Absorpsiyon ve özgül ağırlık değerleri, agregası doğal su, İçeriğin
de olan çimentolu karışımlar İçin kullanılacaksa,.sabit ağırlığa kadar kurutma işlemi yapılmayabilir ve danelerin yüzeyi deneye kadar ıslak olarak muhafaza
edilebiliyorsa, numune 15 saat suda bekletilmeyebilir.
Suda bekletme aşamasından önce, kurutulmadan deneye alınan agregaların absorpsiyon ve doygun yüzey kuru hacim özgül ağırlıktan kurutularak deneye alınanlara göre daha yüksek çıkabilir. Özellikle 75.0 mm’den daha büyük danelerin suda bekletilme sırasında, merkezlerindeki boşluktan kolaylıkla su giremez. ve bu daneler kurutulmadan deneye alınmışsa, yüksek değerler verirler.
2.7.3  —Numune, bekleme süresi sonunda sudan çıkarılır ve bir havlu veya bezle dane yüzeylerindeki su iyice kurulanır. Kurulama işlemi hava akımıyla da yapılabilir. Yüzeyi kurutma sırasında boşluklardaki suyu buharlaştırmamaya özen gösterilmelidir. Doygun yüzey kuru durumdaki bu numune 1 g duyarlıkla tartılarak ağırlığı kaydedilir.
2.7.4  —Tartma işleminden hemen sonra nunume tel sepete konularak, yoğunluğu   997± 2 kg/m3 ve sıcaklığı 23 ± 1.7°C olan su içerisine batırılır ve tel sepet sallanarak içerisindeki hava çıkarldıktan sonra tartılır. Numunenin sudaki ağırlığı, bu tartımdan, boş sepetin sudaki ağırlığı çıkartılarak.bulunur.
2.7.5        — Sudan çıkartılan numune 110 ± 5°C fırında sabit ağırlığa gelene kadar kurutulur ve oda sıcaklığında soğutularak tartılır.

2.8 – HESAPLAMALAR:
2.8.1 — özgül Ağırlıklar:Hacim özgül Ağırlığı =    A      (23oCde)
D – C
Doygun Yüzey Kuru Hacim Özgül Ağırlık =     A   
B – C
Zahiri özgül Ağırlık=    A
                            A – C
Burada,
A= Fırında kurutulmuş numunenin havadaki ağırlığı, g
B= Doygun yüzey kuru numunenin havadaki ağırlığı, g
C= Numunenin sudaki ağırlığı, g

2.8.2 —Ortalama özgül Ağırlık Değerleri:
Numune ayrı fraksiyonlar halinde deneye alınmışsa, ortalama özgül ağırlıklar aşağıda verilen bağıntı İle bulunur.

G =                 1                                                      
100.G1    +    100.G2   + 100.Gn
Burada,
G = Ortalama özgül ağırlık (Zahiri, doygun yüzey kuru, v.b.)
G1 G2       Gn = Fraksiyonların Özgül ağırlıklari
P1  P……  Pn = Her fraksiyonun esas numunedeki ağırlıkça %’leri
Sonuçlar, birim ağırlık cinsinden İfade edilebilir. Bunun için doygun yüzey kuru hacim Özgül ağırlık veya zahiri Özgül ağırlık, 23°C’deki suyun birim ağırlığı olan 997.5 kg/m3 İle çarpılır. 4°C’deki suyun birim ağırlığı olan 1000 kg/m3‘de kullanılabilir.

2.8.3   — Absorpsiyon:
% Absorpsiyon=    B-A/A x 100

2.8.4   — Ortalama Abaorpsiyon :
Numune fraksiyonlar halinde deneye alınmışsa, ortalama absorpsiyon değeri şu bağıntı yardımıyla bulunur.

A=(P1. A1/100) + (P2 . A2/100) + ………………  + (Pn . An/100)] Burada,
A= Ortalama absorpsiyon, %
A1 A2 ……. An = Her bir fraksiyonun absorpsiyon değerleri, %
P1  P2,………Pn =  Her fraksiyonun esas numunedeki ağırlıkça %’leri
Özgül ağırlıklar 0.01 yakınlıkla, absorpsiyon değerleri ise % 0.1 yakınlıkla verilir……………… .

ÖRNEK
 : İri agreganın ortalama özgül ağırlık ve absorpsiyonunun bulunması.
Doygun yüzey
Fraksiyon          Esas malzeme                kuru hacim         Numune      Absorpsiyon
(mm)_________   İçindeki %____           özgül ağırlık_______(g)________     %
4.75 -12.5           44                         2.72                2213.0                   0.4
12.5 -27.5           35                         2.56                5462.5                   2.5
37.5 – 63.0          21                         2.54               12593.0                   3.0
TOPLAM              100

Ortalama doygun yüzey kuru hacim özgül ağırlığı 

Ort               44      +           35         +              21                 = 2.62
                100×2.72        100×2.56                100×2.54
Ortalama % absorpsiyon :
A=[(44×0.4/100) + (35×2.5/100) + (21×3.0/100)] – %1.68

3 — İnce malzemenin özgül ağirliğinin bulunmasi :
3.1 — TANIMI
özgül ağırlık, belli sıcaklıkta ve belli hacimde havada tartılmış malzemenin, aynı sıcaklıkta ve aynı hacimdeki saf suyun ağırlığına oranıdır.

3.2 — KULLANILAN ALETLER :
3.2.1 — Piknometre : En az 100 ml kapasitede volumetrik balon veya en az 50 ml kapasitede cam kapaklı bir şişe. Kapak, şişeyle aynı malzemeden yapılmış, büyüklüğü ve şekli şişenin boyun kısmında belli bir derinliğe kadar kolaylıkla girebilecek şekilde olmalı ve kapağın merkezinde havanın ya da fazla suyun
3.2.2 — 
Terazi: Volumetrik balon için 0.01 g duyarlılıkta, kapaklı şişe için­se 0.001 g duyarlılıkta bir terazi.    
3.2.3 — Fırın : 110 ± 5°C sıcaklığında termostatik kontrollü bir fırın.
3.2.4. — Termometre : 0 – 50°C arasında derecelendirilmiş, 1°C duyalılıkta bir termometre.

3.3 — PİKNOMETRENİN KALİBRASYONU :
3.3.1 Temizlenmiş, kurutulmuş piknometre tartılır ve ağırlığı kaydedilir
(Wo. Piknometre oda sıcaklığındaki distile su ile doldurulur. Su dolu piknometrenin ağırlığı kaydedilir (Wa. Bir termometre ile suyun sıcaklığı ölçülür ve en yakın tamsayıya tamamlanarak kaydedilir (T1).
Fırında kurutulmuş bir toprak numunesi için, distile su yerine, daha iyi bir
ıslatıcı olan gazyağı da kullanılabilir.
3.3.2   — Belli bir sıcaklıkta (T1) bulunan piknometre + su ağırlığı (W1 ile bir
T2 – Wa tablosu oluşturulabilir. Daha sonra su ve toprakla dolu piknometre ağır
lığının (Wb) ölçüldüğü sıradaki Tx sıcaklığındaki piknometre + su ağırlığı, bu tab
lo yardımıyla bulunabilir. Bu tabloyu oluşturmak için gerekli olan W, değerleri,
aşağıda verilen bağıntı ile hesaplanabilir.

Tx°C de suyun yoğunluğu
Wa(T.°C sıcaklıkta)  =    —————————-     x  [Wa(T1°C ‘de)-W0 ]+ W0
T1°C’de suyun yoğunluğu
Burada,
Wa = Su İle dolu piknometre ağırlığı, g
Wb = Piknometre ağırlığı, g
T = Deneyde bulunan sıcaklık, °C
Tx  = istenen sıcaklık °C
Laboratuarda aynı piknometre kullanıldığında Tx – Wa tablosu güvenle kullanılabilir. Wa
ve Wb değerlerinin aynı sıcaklıktaki suya göre ağırlıklar olması oldukça önemlidir.
Ayrıca,laboratuarda piknometre ve içindekileri istenilen
sıcaklığa getirmek oldukça fazla zaman alır. Bu nedenle Wa değerlerinin tablolaştırılması daha uygundur. 18°C’den 30°C’ye kadar, suyun zahiri yoğunluk değerleri
Bölüm – 3.6.2’de verilmiştir.                                                

3.4 — NUMUNENİN HAZIRLANIŞI :
3.4.1   —Özgül ağırlık deneyinde kullanılacak olan numune doğal su içeriğinde veya fırında kurutulmuş olabilir. Numunenin kuru ağırlığı, volumetrik balon kullanılacaksa en az 25 g, kapaklı şişe kullanılacaksa en az 10 g olmalıdır.
3.4.2  —Numune doğal su İçeriğinde ise, deney sonunda 110 ± 5°C fırında kurutulur ve ağırlığı Wn olarak kaydedilir. Bazı toprakların 110°C sıcaklıkta kurutulması, kompozisyonlarının bozulmasına neden olabilir. Bu gibi durumlarda numune, düşük sıcaklık ve yüksek basınç altında kurutulabilir. Doğal su İçeriğindeki kil numuneleri piknometre İçerisine yerleştirilmeden önce, hidrometre deneyinde kullanılan ayrıştırma kabı içinde saf su ile karıştırılarak danelerine ayrıştırılmalıdır.
3.4.3 — Deneyde fırında kurutulmuş numune kullanıldığında, numune 110+5°C fırında en az 12 saat sabit ağırlığa gelene kadar kurutulur. Daha sonra oda sıcaklığına kadar soğutulan numune tartılarak piknometreye konulur veya piknometreye konduktan sonra tartılır. Piknometreye, içindeki numunenin yüzeyini tamamen örtecek kadar saf su konulur ve en az 12 saat beklemeye bırakılır.

3.5. — DENEYİN YAPILIŞI:
Bölüm 3.4’de anlatılan şekilde hazırlanan numunedeki saf su miktarı, volumetrik balonun 3/4’ünü dolduracak kadar veya kapaklı şişenin yansını dolduracak kadar olmalıdır.
Boşluklardaki hava, aşağıdaki metotlardan birisi kullanılarak çıkartılır.
a — 100 mm Hg basıncı geçmeyecek şekilde kısmi vakum yoluyla;
b — Arada bir piknometreyi sallayarak en az 10 dakika kaynatma yoluyla.
Karışıma düşük hava basıncı uygulanması, piknometreyi doğrudan aspiratöre veya vakum pompasına bağlayarak ya da çan şekilde kavanoz kullanarak
yapılabilir. Bazı topraklar, düşük hava basıncı uygulandığında şiddetli bir şekil
de kaynayabilir. Böyle durumlarda basıncın yavaş yavaş düşürülmesi veya daha
büyük balon kullanılması gereklidir. Isıtılan numuneler, oda sıcaklığına soğutulmalıdır.
Kısmi vakum uygulandığında, boşaltma İşlemi sırasında balon hafifçe çalkalanmalıdır,
A — Yüksek plastisitede ve doğal su İçeriğindeki numunelerden havanın cık
malıdır.
Kısmi vakum uygulandığında, boşaltma işlemi sırasında balon hafifçe çalka
lanmalıdır.                                                     .
A — Yüksek plastisitede ve doğal su İçeriğindeki numunelerden havanın çık
ması 6 ile 8 saat süre gerektirir. Düşük plastisiteli numunelerde ise, 4 ile 6 saatlik
sûre yeterlidir.                                                                                       
B — Fırında kurutulmuş numunelerden havanın çıkması İçin gerekli sûre 2 İle 4 saat arasıdır.
Piknometre saf su İle doldurulur, dışı temizlenir ve kurulanır. Pikno-metre ve içindeki karışımın ağırlığı Wb ve o andaki sıcaklık T, olarak kaydedilir.

3.6 — HESAPLAMALAR:
3.6.1 — Tx°C sıcaklığında, suya göre özgül ağırlık;
Özgül Ağırlık (TxoC/C) =Wn/[Wn+(Wa—Wb] Burada,
Wn = Fırında kurutulmuş numunenin ağırlığı, g
Wa = Suyla dolu piknometrenin Tx0C’deki ağırlığı, g      

metre ve içindeki karışımın ağırlığı Wb ve o andaki sıcaklık Tx olarak kaydedilir.

Wb = Su ve toprakla birlikte piknometrenin Tx°C sıcaklıktaki ağırlığı, g

 Tx = Wb ağırlığı ölçüldüğü sırada, piknometre İçindeki su – toprak karışımının sıcaklığı, °C

W, değeri Bölüm 3.3.2’de anlatılan şekilde oluşturulan tablodan alınabilir.

3.6.2 —Tersi belirtilmediği sürece özgül ağırlık, su sıcaklığı 20°C olacak seli,    kilde verilir. Herhangi bir sıcaklıktaki değer, aşağıda verilen bağıntı yardımı ile, 20°C’ye göre hesaplanabilir.

Özgül Ağırlık (TxoC/20°C)=K x özgül Ağırlık (TxoC/Tx°C)

K=Tx°C sıcaklığındaki suyun zahiri yoğunluğunu, 20°C’dekİ zahiri yoğunluğuyla bölerek elde edilen değerdir.

İncelik Modülü;

         İncelik modülü, agreganın İncelik veya kalınlığını ifade eden beynelmilel bir terim olup, delik açıklığı birbirinin iki misli artan elekler üzerinde kalan malzemenin kümülatif lif yüzdeler toplamının yüze bölünmesiyle elde edilen rakamdır. İncelik modülü hiçbir zaman granülometri’yi ifade etmez, zira çeşitli agregaların granülometrilerinden elde edilecek İncelik modülleri aynı değeri verebilir.

İnce agregada incelik modülü hesabında kullanılan elekler, elek açıklığı 9.520 mm (3/8″), 4.760 mm (No. 4),

2,380 mm. (No. 8), 1.190 mm. (No. 16), 0.590 mm. (No. 30), 0.297 mm. (No.50) ve     0.149 mm (No. 100) olan eleklerdir. İnce agregada İncelik modülünün hesaplanmasına ait bir örnek aşağıda gösterilmiştir. 

       Elek Açıklığı                                       Kümülatif Kalan (%)

9.520 mm (3/8″)                                                0

4.760 mm No:  4                                               2

2.380 mm No:  8                                              15

1.190 mm No: 16                                              35

0.590 mm No:  30                                             55

0.297 mm No:  50                                             79

0.149 mm No: 100                                             97

TOPLAM                                                         283

İncelik Modülü = 283/100 = 2,83

İncelik modülü iri agrega için de tayin edilebilir.

Elek Analizi İçin Numune Hazırlama; Deneyin Yapılışı ve Neticenin Hesaplanması:

a)    İnce Agrega’da: Numuneler iyice karıştırılmış malzemeden alınmalıdır.

Kum İncelik Modülü
  Şartname toleransları     Numunenin Net  Ağırlığı(g)

–  İri Kum     (İ.Modülü        2.50-3.50)                  400 – 800

–  Orta Kum (İ.Modülü         1.50-2.50)                  200 – 400

–   İnce Kum  (İ.Modülü       0.50-1.50)                  100 – 200

Agregalarda Organik Maddelerin Bulunması

Birçok organik maddelerin çimentoların prizi ve sertleşmeleri üzerine gayet belirli zararlı etkileri vardır. Bu zararlı etki iki sebebe dayanmaktadır. Birisi organik maddelerin bir kısmının hidrofob olması, diğer bir deyimle suyu itmesi, diğeri ise organik maddelerin bazılarının erimeyerek çimentoda hidrate kristallerin teşekkülünü önlemesidir. Agregada organik maddelerin fazla miktarda bulunması bunlarla üretilen betonun mukavemetinin %50 azalmasına ve hatta bazen çimentonun priz yapmamasına dahi sebep olabilir. Şunu da ayrıca belirtelim ki daha ziyade kumlarda fazla miktarda organik madde bulunma ihtimali vardır.
Agregalarda organik maddenin bulunup bulunmadığını anlamak için renklendirme metodu denilen bir deney uygulanır. Bu maksatla 1lt suya 30gr. NaOH konulmak suretiyle sodyum hidroksit eriyiği hazırlanır. Bir cam eprüvetin 100. kısmına kadar konulan agrega üzerine bu eriyikten 160. kısma ulaşıncaya kadar dökülür. Eprüvet içindekiler dökülmeden kuvvetli bir şekilde çalkalanır. Bundan 24 saat hareket ettirilmeden muhafaza edilir. Bu müddet sonunda agreganın üstündeki eriyik rengini değiştirmiştir. Eriyiğin aldığı renkle ilgili şu sonuçlar çıkarılır:

Tablo 5-I
Agregada organik maddelerin durumu

 

Eriyik rengi Organik madde Agreganın durumu
Renksiz veya çok hafif sarı Organik madde ya hiç yok veya çok az var Yüksek kaliteli beton için kullanılmaya elverişli
Safran sarısı Az miktarda var Normal işlerde kullanılır
Belirli kırmızı Var Önemsiz işlerde kullanılır
Belirli kahverengi Çok var Kullanılmaz

NaOH eriyiğinin zamanla sararması ve böylelikle yanlış değerlendirmenin yapılması olasılığı vardır. Bunu önlemek için bazı önemli hallerde karşılaştırma maksadıyla NaOH eriyiğinden başka bir eriyik aşağıdaki şekilde hazırlanır.
— 97,5 cm3 % 3 sud eriyiği
2,5 cm3 alkollenmiş tannik eriyiği
Bu sonuncu bileşim şöyledir:

90 tonik asit % 2 (1It. suya 20gr. tonik asit konuluyor)
% 10 95° C etil alkol
Bu eriyik elde edildikten sonra bir şişeye konulur ağzı kapatılır, kuvvetle sallandıktan sonra 24 saat hareketsiz bırakılır.
Yukarıdaki şekilde yapılan deneyde agrega üstündeki sud eriyiğinin rengi yukarıdaki eriyiğin renginden açık ise organik madde ya hiç yok veya zarar meydana getirmeyecek miktarda agrega içinde bulunmaktadır. Aksi halde ise agrega da zarar meydana getirecek miktarda organik madde bulunmaktadır.
Bazı hallerde betonun farklı özelliklere sahip olmasını sağlamak amacı ile kökeni organik madde olan, örneğin testere tozu gibi, agrega kullanılır. Bu gibi hallerde bu cins agrega bazı tedbirlere başvurmak suretiyle zararsız hale getirilir veya zararlı etkisi azaltılır. Son olarak şunu da belirtelim ki beton sertleştikten sonra organik bir madde ile temas halinde bulunmasının herhangi bir zararı yoktur. 
Agregaların Aşınmaya Göre Mukavemeti

Yol ve hava meydanlarındaki beton bilindiği gibi sademe ve aşınma etkilerinin altındadır. Bu gibi yerlerdeki betonun bu etkilere dayanabilmesi için yapımında kullanılan iri agreganın aşınmaya ve sademeye karşı büyük bir mukavemete sahip olması lazımdır. Bu maksatla agregalar üzerinde Deval ve Los Angeles deneyleri yapılır. Bunlardan, daha fazla uygulanması bakımından burada Los Angeles deneyinin esası belirtilmekle yetinilecektir.

Bu deneyde kullanılan alet 71,1cm çapında ve 50,8cm uzunluğunda çelik saçtan yapılmış yatay ekseni dakikada 30- 35 devir yapmak suretiyle dönebilen, bir silindirden ibarettir. Silindir içinde fonttan yapılmış muhtelif adet küresel bilyeler (47,7mm çapında ve 390,45 gr. ağırlığında) vardır. Silindir içine P ağırlığında, granülometri bileşimi aşağıda Tablo 4-I’ de verilen bileşimlerden herhangi birine uyan agrega konulur. Alet ekseni etrafında 500 defa döndükten sonra deneye son verilir. Deney esnasında taneler birbirine çarparak ve ayrıca font kürelerin bu tanelere vurmasıyla parçalanır, yani ufalanır. Deney sonunda silindirden alınan malzeme 1,6mm’ lik elekten elenir. Bu elek üstünde kalan malzeme miktarı  ise aşınma miktarı şu ifade ile hesaplanır. 

Elekten geçen miktar ne kadar az yani , (P)’ ye ne kadar yakınsa; diğer bir deyişle (U) ne kadar küçük ise agreganın aşınmaya karşı o kadar büyük bir mukavemeti vardır ve böyle bir agrega ayrıca yol betonu yapımına o kadar elverişlidir.
Deneyler agreganın P ağırlığı, döner silindir içindeki font kürelerin adedi, deney tabi tutulan agreganın granülometri bileşimine göre ne şekilde değiştiği Tablo 4-I’ de gösterilmektedir.

Tablo4-I
Los Angeles deney şartları

Elek göz boyutları
  A
 B
    C
      D
40- 25 m/m arası
%25
     —
      —
      —
25- 20         »
%25
     —
      —
       —
20- 12,5      »
%25
%50
      —
      —
12,5- 10      »
%25
%50
      —
      —
10- 8           »
  —

   % 50
      —
8- 5             »
  —

   % 50
      —
5- 2,5          »
  —

      —
  %100
Agrega miktarı:  kg
  5
4,55
      3,3
     2,5
Font küre adedi
 12
11
       8
      7


Agreganın bu şekilde yapılan aşınma deneyi sonucundan bu malzemenin diğer özellikleri hakkında da bir fikir edinmek mümkündür. Yapılan deneylere göre aşınmaya karşı mukavemeti yüksek olan agregaların basınç mukavemetleri de yüksektir ve bunlarla üretilen betonun basınç ve eğilme mukavemetleri de büyük değerler almaktadır.

Agrega Deneyleri

·         Yüzey nem oranı tayini (TS 3523)

·         Özgül ağırlık ve su emme deneyi (TS 3526)

·         Su emme deneyi (TS 3526)

·         İnce madde oranı tayini (TS 3527)(Yıkama ile)

·         İnce madde oranı tayini (TS 3527)(Çökeltme ile)

·         Hafif madde oranı tayini (TS 3528)

·         Birim ağırlık deneyi (TS 3529)

·         Tane büyüklüğü dağılımının tayini (TS 3530)(Granülometri)

·         Dona dayanıklılık deneyi (NaSO4,MgSO4)(TS 3655)

·         Dona dayanıklılık deneyi (Soğutma dolabında) (TS 3655)

·         Organik madde tayini (TS 3673)

·         Aşınma deneyi (TS 3694 (Los Angeles)

·         Tane şekli sınıfı tayini (KT I, KT II, KT III içeren ocak için)

·         Beton agregaları yeterlilik deneyi (TS 38219)

·         Kil toprakları deneyi (eski TS 707)

·         Alkali agrega reaktivite deneyi (TS 2517)

·         Ufalanma deneyi

·         Pirinç çubukla sertlik deneyi

·         Alkali-agrega aktivite deneyi (ASTM C 586)

Betonarme Donatı Deneyleri

·         Akma sınırı, çekme dayanımı, kopma uzama oranının bulunması

·         Yalnız çekme dayanımının bulunması

·         Katlama deneyi

·         İleri-geri eğme deneyi

·         Gevşeme deneyi

·         Elastisite modülü tayini

·         Öngerme halatı

·         Aderans deneyi (beton numuneden)

Yıkıntısız Deneyler ve Karot Alımı

·         Schmidt çekici ile muayene

·         Ultrasonic muayene

·         Karot numune alma

·         Donatı tesbiti (paşometre ile donatı sayma)

·         Donatı tesbiti (donatı açma ve tesbiti )

 

14
May

Agregalardaki Zararlı Maddeler

aggregate-300x300ALKALİ-SİLİKA REAKSİYONU

Betonarme veya beton yapı elemanlarının zamanla bozulup işlevlerini beklenen servis ömürlerine ulaşamadan yitirmelerine birçok faktör sebep olabilir. Yapı elemanının durabilitesini belirleyen etkenler arasında beton bileşimini oluşturan malzemelerin fiziksel ve kimyasal yapısından kaynaklanan iç etkiler ve çevreden kaynaklanan dış etkiler sayılabilir. Bazı durumlarda, beton bileşimini oluşturan malzemelerin kendi aralarında veya çevreden gelen zararlı maddelerle kimyasal reaksiyonlar yapabildiği, böylece yapının yada yapı elemanının hacim sabitliğinin bozulması nedeniyle zarar görebildiği bilinmektedir. Alkali-Silika Reaksiyonu, bu tür kimyasal bozulma nedenlerinden biridir. [K. TOSUN, H. YAZICI, B. BARADAN,2000]

1920’li ve 1930’lu yıllarda ABD, Kaliforniya’daki beton yapılarda nedeni belirsiz çatlak oluşumlarına bağlı yıkımlar rapor edilmiştir. Beton malzemelerin standartlara uygun olmasına rağmen, yapım yılını takiben birkaç yıl içinde çatlaklar oluşmuştur. Genellikle harita çatlağı şeklinde görülen sorun bazen de çatlaklardan jel çıkışı, betonun patlaması gibi belirtiler de göstermiştir. Stanton, 1940 yılında çatlamanın (daha sonra Alkali-Silika Reaksiyonu olarak adlandırılan) kimyasal bir reaksiyonun sonucu olduğunu açıklamıştır. [F.BEKTAŞ,]

Gerek ülkemizde gerekse diğer ülkelerde birçok betonarme yapıda hasarlar meydana getiren ASR, oldukça kompleks kimyasal bir reaksiyondur. Bazı çimentoların içinde fazla miktarda bulunan sodyum oksit (Na20) ve potasyum oksit (K20) gibi alkali oksitler beton gözenek suyunda çözülerek sodyum hidroksit (NaOH) ve potasyum hidroksit (KOH) oluştururlar ve aktif silis içeren agregalarla reaksiyona girerek, zamanla betonu çatlatan bir jel oluşumuna sebep olurlar. Reaksiyonun neden olduğu genleşme belli bir sınırı aştığında beton için potansiyel bir tehlike oluşturur.[A. M. NEVILLE]

Çimento, hammaddesi en kolay ve bol bulunan bir ürün olarak bilinir. Özellikle ülkemizde, hemen hemen her bölgede çimento temel hammaddesi olan kalker ve kile rastlamak mümkündür. Ancak doğada bulunan bu maddelerin hiçbiri ideal bir klinker üretimi için istenilen özelliklere uygun olmadığı gibi, hiçbir zaman sürekli bir homojen yapı göstermezler. Bilindiği gibi çimento fabrikalarında günde binlerce ton kalker ve kil kullanılır. Bu çapta bir madde akışı içinde ocaklarda seçme, ayırma ve kontrol olanakları son derece sınırlı kalır.

Ocaklardan doğrudan alınan hammaddelerde, içinde klinker üretimi için sakınca yaratabilen birçok bileşen bulunabilir. Genellikle sediman bir oluşum olan kil mineralleri içinde magnezyum oksit, sülfat, klorür, serbest silis (kuvars), sodyum ve potasyum oksitlerine rastlanabilir. Hammadde içinde fırına giren bu bileşimler klinker oluşum reaksiyonlarına katılmazlar. Ancak pişirme, öğütme ve üretilen çimentonun hidratasyonu sırasında çeşitli sakıncalar yaratırlar.

Hemen hemen bütün kil mineralleri içinde alkali oksitlerine ve klorür tuzlarına rastlanır. Bu bileşenlerin çimento içinde belli değerlerden fazla bulunması istenilmez. Hatta normal değerlerde bulunması halinde bile, özellikle ön ısıtmalı klinker üretim sistemlerinde büyük sorun yaratırlar. En uygun hammadde kullanımı halinde bile

alkali oksit ve klorür etkilerinden tam olarak kurtulmak söz konusu olmadığına göre, bu bileşenlerin zararlı etkilerinden kurtulmak için özel önlemlerin alınması gerekir.

Pratikte çimento içinde bulunan alkali oksit yüzdesi büyük önem taşımaktadır. Ülkemiz standartlarında herhangi bir sınır değer bulunmamakla beraber, ASTM standartlarında çimento içindeki toplam alkalinite yüzdesinin % (Na20+0,658 K20) 0,6 ‘dan fazla olmaması şartı bulunmaktadır. [B. Ö. ŞENSÖZ, S. YALÇN,2001]

2. ALKALİ-SİLİKA REAKSİYONU MEKANİZMASI

ASR’nin oluşabilmesi için agregada reaktif silika formları, yeterli miktarda alkali ve ortamda nem bulunmalıdır. Bu koşullardan herhangi biri olmazsa ASR nedeniyle bir genleşme de olmayacaktır. ASR basitçe iki aşamada görülebilir;

1. Alkali + Reaktif Silika > Alkali-silika jel ürünleri

2. Alkali-silika jeli + Nem > Genleşme

Reaksiyonun oluşabilmesi için çimento alkali içeriğinin “eşdeğer Na20” değeri olarak % 0,6 değerini aşması gerekir. Portland çimentosunun toplam alkali içeriği sodyum oksit eşdeğeri olarak şu ifade ile hesaplanmaktadır; [Thomas Telford Ltd.]

(Na20)e = Na20 + 0,658 K20

Çimentoda bulunan sodyum ve potasyum oksitler çimentonun hammaddelerinden (kil, kireçtaşı, şeyl vb) kaynaklanır.Ayrıca alkaliler, çimento dışında; agrega, karışım suyu, beton katkı maddeleri, buz çözücü tuzlar, zemin suyu, beton kür suyu ve endüstriyel atık suları aracılığıyla beton bünyesine girebilirler. [A.

M. NEVILLE]

Genelde sadece çimento ve çimentolanma özelliği olan malzemelerin alkalinitesi göz önüne alınmaktadır. Ancak, betona katılan kimyasal yada mineral katkılar alkali içeriyorsa gelen ilave alkali miktarı gözönüne alınır. Beton içine alkali girişi sadece çimentodan kaynaklanıyorsa alkali içeriği şu ifade ile hesaplanabilir;[

M.KALMIŞ, N.GUNGOR, S.ERIBOL] [Çimentonun alkali %] x [Çimento dozajı (kg/m3) 1 = Betondaki alkali miktarı (kg/m3)

Betonun alkalinitesi arttıkça ASR potansiyeli de artar. Alkali hidroksit çözeltisi, reaktif agregalarla kolayca reaksiyona girer. Yüksek konsantrasyonl u alkali çözeltide, silikanın kararlı formları bile güçlü silikon bağlarının kırılması nedeniyle reaksiyona girebilir. Agreganın reaktifliği arttıkça daha düşük alkalili çözeltilerde bile jel reaksiyonu oluşabilir. Silika mineralleri reaktiflikleri açısından opal, kalsedon, kristobalit, kriptokristal kuartz olarak sıralanabilir. Bu minerallerden bir veya birkaçının birarada bulunduğu kayalar arasında, opal, kalsedon, kuartz çörtleri, silisli kireçtaşları, silisli dolomitler, riyolit ve tüfleri, dazit ve tüfleri, silisli şeyller, filitler, opalli oluşumlar, çatlamış ve boşlukları dolmuş kuartzlar sayılabilir.[ Thomas Telford Ltd.]

ASR’nin genel mekanizması bilinmekle birlikte, beton üzerine yapmış olduğu etkiler henüz tam olarak açıklığa kavuşmamıştır. Orneğin çimento alkalinitesi belli bir değere erişince betonda şişme görülmekte, fakat alkalinite ile doğru orantılı olarak artmamaktadır. Buna karşılık çimento dozajının artışı, şişmenin de artmasına neden olmaktadır. ASR için mutlaka suya ihtiyaç olduğu halde, su içinde bekletilen betonlarda şişme meydana gelmemektedir. Maksimum şişme betonun doygun rutubetli atmosferde tutulması halinde görülmektedir. Reaktif agreganın inceliği reaksiyon hızını arttırmakla beraber, yüksek incelikte olan mineraller her zaman aynı derecede şişmeye neden olmamaktadır. Beton yapının poröz olması halinde, oluşan alkali silikat jeli beton boşlukları içine dolarak betonda herhangi bir şişme meydana getirmemektedir.[ B. Ö. ŞENSÖZ, S. YALÇIN,2001]

ASR’nin oluşumuna neden olan bir diğer koşul olan nem, bozulmanın ve hacim değişikliğinin şiddeti üzerinde önemli bir etkiye sahiptir. ASR, yanlızca nem varlığında gerçekleşir. Nem, alkali iyonlarının yayılmasına, oluşan jel ise su emerek şişip genişlemeye ve betonda içsel çekme gerilmelerinin doğmasına böylece agrega ile onu çevreleyen çimento harcının çatlamasına neden olurlar. (Fotoğraf 2.1.) Çatlamadan sonra ortama giren su, jelin emebileceğinden fazla olursa bir miktar jel dışarı sızar, bu durum ileri düzeyde bir hasarın kanıtıdır. Su, ASR’de iki rol üstlenmiştir, taşıyıcılığın yanısıra jelin büyümesini de sağlar. Betonun kurutulması ve ileride su ile temasının önlenmesi reaksiyonun durdurulması için etkilidir. Aksine, tekrarlı ıslanma ve kuruma, alkali iyonlarının göçünü hızlandırarak reaksiyonun şiddetini arttırır.[ Thomas Telford Ltd.]

Fotoğraf 2.1. ASRJeIinin Beton İçinde Oluşumu [ACI 221.İR State of the Report on Alcali-Agrigate Reactivity 1

ASR üzerinde beton karışım oranları, agrega boyutu, hava katkısı, mineral ve kimyasal katıkların ve ortam sıcaklığının da etkisi vardır.

Reaktif agrega/alkali oranının belirli bir değerde olması maksimum genleşmeye neden olmaktadır. Yapılan araştırmalar bu oranın 3 ile 10 arasında değiştiğini göstermekte, pik genleşmeye neden olan bu değere “pesimum oran”

denmektedir. Bu davranış, deneylerde şüpheli kumlar ve reaktif olmayan kırmataş tozu farklı oranlarda kullanılarak belirlenebilmektedir.[ Thomas Telford Ltd.]

Şekil 2.1. Silisli Agrega İçeren Bir Betonun İç Yapısı. [GLASSER,1992]

Uygulayıcılar, ASR’nin betonu kendiliğinden tahrip etmediğini doğrulamaktadırlar. Daha ziyade, ASR’ye maruz kalan beton, günden güne ortaya çıkan zararlarla daha erken yıpranarak, güçsüzleşmektedir. ASR’nin yıpratıcı kimyasal reaksiyonlarına dair bilinenler köprü tabliyelerindeki harita şeklinde ve uzunlamasına çatlaklar ile taşıyıcı kolonlardaki uzunlamasına çatiaklardır. ASR’nin sebep olduğu neden-sonuç ilişkileri, ASR’nin betonun AIDS’i “ olarak adlandırılmasına yol açmaktadır.[ T. KUENNEN]

3. ALKALİ-SİLİKA REAKSİYONUNU ETKİLEYEN FAKTÖRLER

3.1. Karışım Oranlarının Etkisi

Reaktif agrega içeren bir betonun karışım oranlarını değiştirerek betonun reaktif agrega içeriği ve hidroksil iyonu konsantrasyonu değiştirilebilir. Bu değişim aynı zamanda betonun sonuçtaki genleşme miktarını da etkiler.

Genleşmenin reaktif alkali/silis oranına bağlı olduğu Şekil 3.1.’de görülmektedir. Maksimum genleşme, reaktif alkali/silis oranının 3.5 ile 5.5 olması durumunda meydana gelmektedir. Harç ve betonların bu davranışı pratikte önemlidir.

Şekil 3.1. ReaktifSilislAlkali Oranına Göre Genleşme Miktarları.

Su altında saklanan numunelerin genleşmesi su/çimento oranına altında saklanmayan numunelerde reaksiyon, su buharının difüzyon olarak kontrol edilmektedir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.2. Alkali İçeriğinin Etkisi

bağlı iken su hızına bağlı

Betonda kullanılan çimentonun alkali içeriğinin değişmesi, betonun hidroksil iyon konsantrasyonunu, betonun alkali içeriğini ve reaktif silis/alkali oranını değiştirir. Suda bekletilen harç çubuklarında çimentonun alkali içeriğinin genleşmeye etkisi Şekil 3.2.’de görülmektedir. Çimentonun alkali miktarı arttıkça pesimum davranış eğrisi genişlemekte ve maksimum genleşme reaktif silis/alkali oranı 4.5 civarında iken meydana gelmektedir.

Benzer alkali içeriklerinde, genleşme miktarlarında önemli farklılıklar gözlemlenmiştir. Bu farklılıklar aşağıdaki faktörlere bağlı olabilir;

 

• Çimentolardan farklı hızlarda alkali açığa çıkması.

• Çimentoların sodyum/potasyum oranlarındaki değişimler.

• Farklı hızlarda dayanım kazanımı. [ K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

.kLIU h

 

Şekil 3.2. Çimentonun Alkali İçeriğinin Genleşmeye Olan Etkisi

3.3. Reaktif Agreganın Cinsinin ve Tane Büyüklüğünün Etkisi

Betonda ASR’nun oluşabilmesi için herhangi bir formda reaktif silisin bulunması gerekmektedir. Reaktif silis oldukça farkı doku ve kristal yapısı sergiler. Silisin doku farklılığı, kayaçlaşma sürecinde azalan soğuma hızına bağlıdır. Agregadaki silisli mineraller kayaç oluşum sürecinde soğuma hızına bağlı olarak amorf veya camsı (kristalleşmemiş) yapıdan kripto kristal, mikro kristal ve kristal yapıya kadar geniş bir aralığa dağılırlar. Kimi durumlarda kuvars kristallerinin oluşumu sırasında içsel gerilmeler oluşur. Bu tür kuvars mineralleri içeren agregalar reaktiftir.

Reaktivitedeki Azalmaya Göre Silis Mineralleri

Amorf silis

Opal

Stabil olmayan kristalin silis

Çört

• Kalsedon

• Silisin diğer kriptokristalin formları

• Metamorfik olarak ayrışmış ve bozulmuş kuvars

• Deforme olmuş kuvars

• Yarı kristalleşmiş kuvars

• Saf kuvars

Reaktivitedeki Azalmaya Göre Kayaçlar

• Tüfler dahil volkanik camlar

• Metakuvarsit metamorfize kumtaşları

• Granitik gnayslar

• Deforme olmuş granitik gnayslar

• Diğer silis içeren metamorfik kayaçlar

• Silisli ve mikalı şist ve filitler

• İyi kristalize olmuş volkanik kayaçlar

• Pegmatitik volkanik kayaçlar

• Silis içermeyen kayaçlar

Reaktif agreganın tane büyüklüğü de ASR sebebiyle oluşabilecek zararlar üzerinde etkilidir. Büyüklüğü 75 Mm ile 1 mm arasında değişen, hatta bazen 5 mm’ye kadar çıkabilen boyutundaki reaktif agrega kullanılması durumunda genleşmenin maksimum olduğu görülmektedir.Ancak, 75 Mm altındaki boyutlarda reaktif agreganın fazla miktarda bulunması halinde genleşme oluşmadığı halde reaksiyon delillerinin ortaya çıktığı gözlenmiştir. Reaktif agreganın boyutunun etkisi, reaktif agreganın fiziksel ve mineralojik karakterine de bağlıdır. Gözenekliliği fazla olan agreganın içine boşluk çözeltisinin girişi daha kolay olmakta ve reaksiyon alanı artmaktadır. [K. RAMYAR, H. DONMEZ, 0. ANDIÇ,2002]

3.4. Dış Alkalilerin Etkisi

Kar mücadelesinde kullanılan tuz (NaCI), deniz suyu, beton kür suyu ve endüstriyel atık suları aracılığıyla beton bünyesine dışarıdan giren alkaliler, dış alkaliler olarak adlandırılır. Özellikle geçirimli betonlarda ve/veya çatlaklar oluşmuş betonlarda dış alkalilerASR’nun neden olduğu genleşmeleri arttırır.

Deniz suyunun sertleşmiş betonda oluşan ASR genleşmelerini arttırıcı etkisi, hidrate C3A ve portlandit bileşenlerinin NaCI ile oluşan reaksiyonu sonucu 0H miktarının artması sebebiyledir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.5. Rutubetin Etkisi

Rutubet, silisin çözülmesine, alkali iyonlarının yayılmasına ve reaksiyon bölgesinde jel oluşumuna sebep olur. Oluşan jel ise su emerek şişip genişler ve betonda içsel çekme gerilmeleri oluşmasına yol açar. Araştırmalar, bağıl nem oranı %80’in üzerinde olan betonlarda ASR’nun oluştuğunu göstermektedir.

Düşük su/çimento oranlı betonun, ilave çimento, mineral katkı veya herhangi bir başka yolla beton geçirimliliği azaltılırsa; rutubetin betona girişi ve beton içinde dolaşımı azalır. Dolayısıyla beton içinde alkalilerin yayılması da azaltılmış olur.

Betonun sürekli olarak suya doygun halde oluşunun mu, yoksa sıkça kuruyup ıslanmasının mı daha çok tahribat yarattığı kesin olarak bilinmemektedir. Ancak sık kuruma-ıslanma tekrarının betonda alkali taşınmasının kolaylaşmasına ve alkalilerin kuruma bölgelerinde yoğunlaşmasına neden olduğundan bu bölgelerde reaksiyonun hızlı gelişimine yol açtığı bilinmektedir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.6. Sıcaklığın Etkisi

Sıcak iklim koşullarındaki yapılar, soğuk iklim koşullarındakilere göre ASR’na karşı daha duyarlıdır. Çünkü reaksiyonun hızı sıcaklık arttıkça artar. Sıcaklık artışı, agreganın büyük çoğunluğunda aşırı termal gerilmelere sebep olur. Bazı agregalarda yapılan araştırmalar, 132O0 0 aralığındaki ölçümlerin 38° C’dekinden farklı olduğunu göstermiştir. Yüksek ve düşük sıcaklıkların genleşmeye etkisi agregaya bağlıdır. Agregaların büyük çoğunluğu daha yüksek sıcaklıklarda daha fazla reaktiflik göstermektedir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

3.7. Sürüklenmiş Havanın Etkisi

Reaktif agrega içeren ancak ASR sebebiyle hasar görmeyen yapılar incelendiğinde, jelin hava boşluklarını tamamen veya kısmen doldurduğu görülmektedir. Bundan dolayı, jelin hasar görmemiş betonda hava boşluklarını doldurarak ilerlediğini ve hava sürükleyici katkı kullanımının ASR sebebiyle oluşan hasarı önleyebileceği söylenebilir. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

4. ALKALİ-SİLİKA REAKSİYONUNUN BELİRTİLERİ

Betonda ASR ürünleri oluşmadıkça ASR hasarından bahsedilemez. Yapılacak dikkatli incelemelerle tespit edilebilecek ASR belirtileri; genleşme, betonda çatlaklar, yüzey birikintileri, yüzey parçalanmaları-patlamaları ve renk değişimleridir. [M.

ARSLAN 2001]

ASR varlığının en tipik göstergesi, genleşmelerle ortaya çıkan harita çatlağı tipindeki çatlak desenleridir. Fotoğraf 4.1. ASR çatlaklarının deseni, yapılarda oluşan zemin ve muhtelif yüklerin neden olduğu çatlak düzenlerinden oldukça farklıdır. [M.

ARSLAN 2001]

Şekil 4.1. ASR’nin neden olduğu harita çatlakları. [ACI 201.2R Guide to Durable

Yapılabilecek göz muayenesi ile; çatlakların konumu ve deseni, uzunlukları, genişlikleri, görünür derinlikleri, çatlakların agrega kesitinden mi yoksa çimento hamurundan mı geçtiği saptanabilir. ASR’nin oluşturduğu jelleşme, agrega taneciği içinde veya agrega taneciği çevresinde reaksiyon halkası biçiminde gelişebilir. Bulabildiği ölçüde su emerek enerjisini boşaltan bu jel, su emdikçe hacimsel olarak büyür (şişer). ASR’den kaynaklanan çekme gerilmeleri nedeni ile 3 veya 4 kollu yıldız şeklinde çatlar. Şekil 4.1. ASR jelinin su emerek şişmesi sonucu beton içinde depolanan potansiyel enerji, bu çatlamalar ile boşalır. [M. ARSLAN,2001]

Fotoğraf 4.1. ASR’den Kaynaklanan Çatlaklara İlişkin Görünüşler.

Beton çatlakları boyunca beyazdan griye kadar değişen renklerde ASR jeli yada kalsiyum karbonat tortuları görülebilir. Bu birikintilere bazen yüzey tortuları veya salgıları da denir. Çatlaklardan dışarı sızan bu maddeler, beyaz sarımtırak veya renksiz, viskoz, akışkan, mumsu, elastik yapışkan yada sert olabilirler. [M.

ARSLAN 2001]

Yüzeyde veya yüzeye çok yakın bölgelerdeki parçalanmalar, tipik bir mısır patlaması gibi davranarak beton yüzeylerinde küçük çukurlar oluşturur. Ileri yaşlarda, ASR kopmalarının kaplama betonlarında daha çok görülür. Özellikle rutubetli, ıslak kohezif zeminler üzerinde olan beton kaplamalarda, rutubet yoğunlaşması patlama türü parçalanmaları arttırır. [M. ARSLAN,2001]

Yüzeyde renk kaybı veya renklenmeler, genellikle harita çatlağı ile birlikte görülür. Koyu renkli veya kararmış bölgeler genellikle ASR’den kaynaklanmaktadır. Çatlak boyunca olan bölgelerde 2-3 mm genişlikte renk açılması, beyazlaşma, pembeleşme yada kahverengileşme görülebilir. [M. ARSLAN,2001]

AKIl .JPG

5. ASR’unu KONTROL ALTINA ALMA YÖNTEMLERİ

ASR’unu önlemenin en iyi yolu beton dökülmeden önce gerekli önlemleri almaktır. Bunun için bağlayıcı malzemelerin ve agregaların dikkatlice analiz edilmesi ve malzeme seçiminin verimliliğini ve ekonomikliğini optimize eden bir kontrol stratejisinin seçilmesi gerekir.

ASR’unu önlemek için malzeme seçiminde aşağıdaki konulara dikkat edilmelidir;

• Aktif silis içermeyen agregaların tercih edilmesi,

• Betonun alkali içeriğini sınırlamak,

• Ortamın nemini kontrol altında tutmak,

• Katkı maddesi kullanımı. [K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

6. ALKALİ-SİLİKA REAKTİVİTESİNİN BELİRLENMESİ

Yüksek alkali içeren betonlarda agreganın iyi bir performans gösterdiğine dair uzun süreli gözlemlere dayanan sonuçlar varsa reaktivite tespiti için ayrıca deney yapmaya gerek yoktur. Aksi halde, agreganın veya belirli agrega-kombinasyonlarının zararlı alkali-silis reaksiyonu gösterip göstermeyeceğinin tespiti için deneyler yapmak gerekmektedir. Alkali-silis reaktivitesi hakkında günümüzde hala uluslararası kabul görmüş tek bir veya birkaç standart deney yöntemi bulunmamaktadır. Ulkeler, kendilerine en uygun deney metotlarını seçerek uygulamaktadırlar.

Laboratuvar deneylerinin bazılarında reaksiyon, anormal yüksek çimento içeriği, alkali ekleme veya yüksek sıcaklıklarda test edilerek hızlandırılmaktadır. Test metotları, bu sebeple iki ana faktör göze alınarak değerlendirilmelidir. Birincisi, bu tür anormal koşullarda bazı silisli bileşenler normal koşullarda olduğundan çok farklı hızlarda reaksiyona girebilirler. İkincisi, reaksiyonun fiziksel etkileri çok farklı olabilir. Bu deneyler ancak, şantiye koşullarıyla veya normal şartlarda kürlenmiş numuneler üzerinde yapılan deneylerle karşılaştırıldığında anlamlı sonuçlara götürebilir. [ K.

RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

6.1. ASTM C 295- Agregaların Petrografik Analizi

Petrografik inceleme, minerallerin cins ve yüzdelerine göre kayacın adlandırılması işlemidir. Agregalardan alınan ince kesitlerin optik mikroskop yardımıyla incelenmesi sonucu içeriklerinde bulunan potansiyel reaktif mineral fazların (reaktif silis) teşhisi mümkündür. X-ışını yayılımı ve tarayıcı elektron mikroskobu gibi yöntemler reaktif silisin saptanmasında faydalıdır. Agregaların yanı sıra, zarar gören beton ve harç numunelerden alınan ince kesitler üzerindeki çalışmalar sonucu, meydana gelen etkinin ASR sebebiyle olup olmadığını

ek deneyler yapılması önerilir. Deney sonuçları, kullanılan kabın tipi, fitillerin bulunup bulunmayışı, çimentonun alkali içeriği, su/çimento oranı gibi faktörlerden önemli miktarda etkilenmektedir.

Bu yöntemin dezavantajları, uzun süreli olması, kür koşullarındaki farklılıklar sebebiyle değişimler gösterebilmesi ve özellikle bazı yavaş reaktif agregaların reaktivitelerinin saptanamamasıdır. Bu yöntem, ayrıca mineral ve kimyasal katkıların ASR genleşmesindeki azaltmalarını ölçmede de kullanılmaktadır. [ASTM 0 227, K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

tanımlayabilmek mümkündür. Petrografik incelemeyi yapan kişinin bu konudaki deneyimi önemli bir faktördür. ASR üzerinde kimyasal metotlar, beton veya harç numuneleri ile testler uygulamadan önce bu analizin uygulanması zaman kazandırmak ve uygulanacak metodun agrega tipine göre seçimini kolaylaştırmak bakımından önemlidir. [ASTM C- 295, K. RAMYAR, H. DÖNMEZ, Ö. ANDİÇ,2002]

6.2. ASTM C 289- Kimyasal Metot

Bu yöntem çabuk ve görünürde açık sonuçlar verdiği için daha çok kullanılmaktadır. Agregayı temsil eden 25 gr ağırlığında ve 150-300 Mm’ye kırılmış numune, 25 mI 1 M sodyum hidroksit çözeltisinde 80 0 derecede 24 saat boyunca bekletilir. Daha sonra filtre edilir ve asitte titre yöntemiyle çözülmüş silis ile alkalinitedeki azalma analiz edilir. Deney üç kez tekrarlanır. Sonuçlar daha sonra Şekil 4.1. ‘deki eğride işaretlenerek kontrol edilir. Bu şekilde Rc alkalinitedeki azalmayı, Sc ise çözülmüş silisi ifade etmektedir. Eğer tüm sonuçlar eğrinin sol tarafındaki bölgede ise agrega zararsız olarak kabul edilebilir. Bu eğri, yüksek alkali içerikli harç çubuğu genleşmeleri, agregaların petrografik analizleri ve betonda kullanılan agregaların saha performansları dikkate alınarak çizilmiştir. [ASTM 0

289K. RAMYAR, H. DONMEZ, 0. ANDIÇ,2002]

Şekil 6.1. Alkalinitedeki Azalma-Çözünmüş Silis Grafiği

14
May

Agregaların Fiziksel Özellikleri

129847078338Agreganın Porozitesi :Agrega tanelerinde bir miktar boşluk bulunması doğaldır. Agrega tanelerindeki boşluk su emme deneyi yapılarak belirlenir. Buna göre kurutulmuş iri agrega tanelerinden Wağırlığında (2-5 kg arasında) malzeme alınarak 24 saat su içinde bırakılır. Bir havlu ile tanelerin yüzeyinden su alınır ve taneler böylelikle kuru yüzey doygun duruma getirilir. Bu tanelerden Wağırlığında malzeme alınarak etüvde kurutulur. Kurutulan malzemenin W0 ağırlığı bulunur.

O halde agreganın ağırlıkça su emme miktarı (W1-W0) / W0 ifadesiyle % cinsinden bulunur. Agreganın porozitesi (P) ise, agreganın gr/cm3 cinsinden özgül ağırlığı, W1ve W gr. cinsinden ağırlıklar olduğuna göre; P=((W1-W0)/W0)*100 olarak ifade edilir.

İri agrega tanelerinin porozitesinin küçük olması ile bu tanelerin mukavemetinin yüksek bir değer alması sağlanır. Mukavemeti yüksek olan taneler kullanılarak üretilen betonların mekanik mukavemeti de artırılabilir [2].

Agrega – Su Bağıntısı: Agreganın emdiği su miktarı tanelerin kökenine, yapısına ve granülometri bileşimine bağlıdır. Agrega taneleri arasındaki boşluklarda su dört şekilde bulunur [3].

a)   Tamamen kuru taneler: Agrega tanelerinde herhangi bir şekilde hiç su bulunmamaktadır.

b)   Kuru yüzeyli taneler: Tanelerin içindeki boşluğun bir kısmı su ile doludur, fakat tanenin yüzeyi tamamen doludur.

c)    Kuru yüzeyli doygun taneler: Tanelerin boşluklarının su ile dolması ve yüzeyinin tamamen kuru olması halidir. (YKSD)

d)    Islak taneler: Agregadaki boşluklar su ile dolu olduğu gibi yüzeyde de su vardır.   

Agregadaki su miktarı agreganın birim ağırlığına, hatta özgül ağırlığına da etki eder. Birim ve özgül ağırlık doygun kuru yüzey hal için verilir. Agregada boşlukların fazla olması agreganın donma ve çevre etkilerine karşı dayanıklılığını azaltır. Agrega su emme yüzdesinin limiti kum ve çakıl için % 1’dir. Su emme yüzdesi yüksek olan agreganın betonda kullanılması beton dayanımını ve dayanıklılığını azaltır.

Agregaların birim ağırlığı, özgül ağırlığı ve kompasitesi ;

Birim Ağırlık: Belirli bir hacmi dolduran agreganın ağırlığına birim ağırlık denir. Agregayı kuru halde iken gevşek olarak bir kaba boşaltarak bulunan birim ağırlığa “gevşek birim ağırlık” ve yine kuru iken belli sayıda çubuk darbesi ile sıkıştırılarak bulunan birim ağırlığa ise “sıkışık birim ağırlık” denir.

Birim ağırlıktan agrega içindeki boşluk miktarı hesaplanabildiği gibi, özel amaçlar için agreganın uygun olup olmadığı da değerlendirilebilir. Ayrıca agreganın granülometri bileşimi ve kusurlu malzemenin varlığı hakkında fikir vermektedir.

Birim ağırlığa etki eden faktörler ;

1.    Agreganın granülometrisine bağlı olarak boşluk miktarı değişmektedir. Boşluk miktarının az olması birim ağırlığı arttırır.

2.    Kusurlu malzemenin fazla miktarda olması boşluğu arttırdığından birim ağırlığı düşürecektir.

3.    Agrega V hacmine sahip bir kalıba yerleştirilirken sarsıntıya maruz bırakılırsa ve çubukla şişlenirse kabı az boşluk bırakarak doldurur. Bu da birim ağırlığın büyük bir değer almasıdır.

4.    Agreganın özgül ağırlığının fazla olması agrega ağırlığının büyük olduğunu gösterir. Dolayısıyla birim ağırlık artar.

Birim ağırlığı yüksek bir betonun dayanımı, dayanıklılığı ve taşıma gücü fazladır. Beton agregalarının birim ağırlığı 1300 – 1850 kg/m3 arasında değişir.

Agreganın sıkışma oranı ne kadar yüksek olursa basınç dayanımı ve dış etkilere dayanımı da o kadar yüksek olur.

Özgül Ağırlık : Belli hacim ve sıcaklıktaki bir malzemenin, havadaki ağırlığının aynı hacim ve sıcaklıktaki damıtık suyun havadaki ağırlığına oranıdır. Bu özellik agrega kökeni hakkında bilgi verir ve beton bileşenlerinin hesabında kullanılır. Betonda kullanılacak agreganın özgül ağırlığının 2,2 – 2,7 kg/dm3 arasında olması istenir.

Özgül ağırlık, agreganın  uygunluğunu belirtir. Düşük özgül ağırlık sağlam olmayan malzemeyi, yüksek özgül ağırlık ise kaliteli betona uygun agregayı tanımlar. Özgül ağırlık beton karışım hesabında, bu hesapların düzeltilmesinde ve beton homojenliğinin zorunluluğu durumlarında gereklidir. Düşük özgül ağırlık agreganın boşluklu ve zayıf olmasına bir işarettir.

Agreganın Kompasitesi : Agreganın kompositesi ile birim hacimdeki agregada tanelerin işgal ettiği hacmin toplamı anlaşılmaktadır. Agreganın özgül ve birim ağırlıkları bilinmek suretiyle kompasitesi hesaplanabilir.  Agreganın birim ağırlığı her zaman için özgül ağırlıktan küçüktür. Dolayısıyla kompasite birden küçüktür. Vtoplam hacim, Vd  dolu hacim olmak üzere, birim ağırlık, Δ = W/V ve özgül ağırlık δ=W/Vd  olduğuna göre komposite k=Δ/δ den Vd/V özgül ve birim ağırlık cinsinden hesaplanabilir. (Δ) birim ağırlık ve (δ) özgül ağırlıktır. Agreganın sıkıştırma işlemine tabi tutulmadan yerleştirilmesi sonucunda kompasite 0,40 – 0,70 arasında değer alır [2].

Agreganın kompasitesinin küçük olması şu zararları meydana getirir ;

1.    Üretilen betonun kompasitesi ve mukavemeti düşük olur.

2.    Kullanılan çimento miktarı artar.

3.    Betonun maliyeti yükselir.

4.    Kusurlu malzeme miktarı artar. Bu da işlenebilme özelliğine etki yaparak mukavemetin düşmesine neden olur.

5.    Dış etkilere karşı dayanıklılık azalır.

13
May

Beton

Beton; dünyada sudan sonra en çok kullanılan bir malzemedir. Ekonomik olması,
bileşenlerinin doğada bol miktarda bulunabilmesi, dayanımı ve dayanıklılığının yüksek, maliyetinin
düşük olması, işlenebilirliği, yangına karşı direnci, üretiminde az enerji gereksinimi duyması, çevre
dostu, estetik yapıların inşasına olanak sağlayan mühendislik özelliklerinden ve daha birçok özelliği ile
alternatifsiz bir yapı elemanıdır. İlkel şekliyle 5000 yıl kadar önce Mısır Piramitlerinin inşasında, Çin
Seddinin yapımında, Romalılar döneminde pek çok mühendislik yapısında kullanıldığı bilinmektedir.
Bugünkü anlamda beton 1824 yılında portland çimentonun üretilmesi ve 1848’de İngilterede ilk
çimento fabrikasının kurulmasıyla kullanılmaya başlanmıştır. Daha sonra 1903 yılında Almanyada
hazır beton kullanılmaya, 1916 yılında da betonun taşınması için transmikserler kullanılmaya
başlanmıştır.

Bugün ise özellikle kimyasal ve mineral katkıların, liflerin betonda kullanılması ile yüksek
dayanımlı betonlar üretilmektedir.
Bu teknik ve ekonomik üstünlülükleri sayesinde, beton geçmişte olduğu gibi gelecek yıllarda
da inşaat sektöründe en çok tercih edilen ve vazgeçilemez malzeme olma özelliğini sürdürecektir.
Beton; çimento, agrega, su ve gerektiğinde kimyasal ve mineral katkıların uygun oranlarda
ve homojen olarak karıştırılmasıyla oluşturulan, başlangıçta plastik kıvamda olup şekil verilebilen,
zamanla çimentonun hidratasyonu ile katılaşıp sertleşerek mukavemet kazanan bir yapı malzemesidir.
İyi beton; maruz kaldığı yüklere ve çevre etkilerine karşı hizmet ömrü boyunca, fiziksel ve
kimyasal bütünlüğünü koruyabilen, dayanımı yüksek, geçirimsiz betondur. Betonda kalitenin ölçüsü,
basınç dayanımına göre değil, betonun ekonomik ömrü boyunca maruz kaldığı çevre etkilerine ve
yüklere karşı dayanıklılığıdır.
Betonun dayanım ve dayanıklılığı, bir çok parametrenin etkisi altında şekillenmektedir.
• Kullanılan malzeme (Agrega, çimento, su, kimyasal ve mineral katkılar)
• Uygun tasarım
• Su/çimento oranı
• Üretim teknolojisi
• Yerleştirme, Sıkıştırma
• Bakım (Kür)

beton-g

 

Agregalar; beton için önemli bir bileşendir ve beton içerisinde hacimsel olarak %60-75 oranında
yer işgal ederler. Agregalar,
• Doğal kum-çakıl ocaklarından yani akarsu yataklarından, alüvyon deltalarından,
• Doğal Taş Ocaklarından kayaların kırılması ve elenmesi ile elde edilirler.
Beton agregalarının,
• Tane büyüklüğü dağılımlarının (granülometri) birbirlerinin boşluklarını dolduracak şekilde
olması,
• Yassı ve uzun taneler yerine kübik ve küresel olması,
• Sert, dayanıklı ve boşluksuz olaması, kavkı gibi zayıf maddeler içermemesi,
• İçerisindeki ince malzemenin kalitesi (kil, silt, mil vb. içermemesi),
• İçerisinde organik maddeler bulundurmaması,
• Tanelerin yoğunluklarının yüksek ve su emme oranının düşük olması,
• Parçalanmaya ve aşınmaya karşı direncinin yüksek olması,
• Donma ve çözülmeye karşı direncinin yüksek olması,
• Çimento ile zararlı kimyasal reaksiyonlara girmemesi (Alkali-Silika Reaksiyonu) istenilen
özelliklerdir.
Porland çimentolar; kalker, kil, gerekiyorsa demir cevheri ve/veya kumun öğütülüp toz haline
getirilmesi ve bu malzemenin 1400-1500 °C’de döner fırınlarda pişirilerek elde edilen klinkere %4-5
oranında alçı taşı ilave edilip tekrar çok ince toz halinde öğütülmesi ile elde edilir. Bunların dışında tek
veya birkaçı bir arada olmak üzere tras, fırın curufu, uçucu kül, silis dumanı vb. katılarak katkılı
çimentolar elde edilir.
Çimentolar fiziksel, mekanik (2,7,28 günlük basınç ve eğilme dayanımları,genleşme değerleri,
priz süreleri, inceliği) ve kimyasal özellikleri yönünden uygun olmalıdır.

Betonda kullanılan karışım suyunun iki önemli işlevi vardır.
• Kuru haldeki çimento ve agregayı ıslatarak plastik hale getirmek,
• Çimento ile kimyasal reaksiyonu gerçekleştirmek ve plastik kütlenin sertleşmesini
sağlamaktır.
İçilebilir nitelikte olan tüm sular beton karışımında kullanılabilir. İçilebilir nitelikte olmayan sular
da deneyleri yapıldıktan sonra kullanılabilir. Su mümkün olduğu kadar temiz olmalı, yağmur ve kar
suları kullanılmamalı, içerisinde şeker, klor,sülfat, yağ, kil, silt ve kimyasal atıklar bulunmamalıdır.
Karışımda suyun yeteri kadar olmaması halinde çimento hidratasyonunu tam olarak
yapamayacak, agrega tanelerinin yüzeyi tam olarak ıslanmayacağından agrega tanesi ile çimento
pastası arasındaki aderans zayıf olacak ve yeterli işlenebilirlik elde edilemeyecektir.
Taze betona kıvam kazandırmak amacıyla fazladan su katılması durumunda ise betonun
bünyesinde çimento ile reaksiyona girmeyen fazla suyun bıraktığı boşluklar yalnız dayanımı
düşürmekle kalmayacak boşluklardan içeri giren klor, sülfat gibi zararlı unsurlar beton ve donatıya
zarar verecek betonun dayanıklılığını da düşecektir (Şekil-2).

Su Miktarı Mukavemet
%20 fazla olması, %30 azalmaya
%30 fazla olması, %50 azalmaya
%100 fazla olması, %80 azalmaya neden olmaktadır.

Kimyasal beton katkı maddeleri betonun fiziksel ve kimyasal özelliklerinin bazılarında
değişiklik yapmak amacıyla beton karışım suyuna belirli oranlarda katılan katkılardır.
En yaygın kullanılan kimyasal katkılar;
• Su azaltıcılar (akışkanlaştırıcılar)
• Priz geciktiriciler,
• Priz hızlandırıcılar,
• Hava sürükleyici katkılar,
• Su geçirimsizlik katkıları,
• Antifirizlerdir.

Bitmiş bir yapıda betonun kalitesini 6 aşama belirler.
• Beton bileşenlerinin kalitesi
• Betonun tasarımı
• Betonun üretimi (Ölçme ve karıştırma)
• Betonun taşınması
• Betonun yerleştirilmesi-sıkıştırılması
• Betonun bakımı-kürü
Bu aşamalardan ilk dördünü beton tesisi gerçekleştirir. Son iki aşama olan, Yerleştirme
Sıkıştırma ve Bakım-Kür işlemleri yapıda gerçekleşir. Betonun uzun yıllar boyunca maruz kaldığı
çevre etkilerine ve yüklere karşı dayanımını ve dayanıklılığını koruması için bu iki hususa da gereken
önemin gösterilmesi gerekir.
Betonun özelliklerini önemli derecede etkileyen bu yerleştirme-sıkıştırma ve ilk günlerden
itibaren kür işlemleri dikkatli ve usulüne uygun bir şekilde yapılmalıdır.
Sıkıştırma (vibrasyon), betonun kalıbın her tarafını doldurmasını ve donatının beton
tarafından iyice sarılmasını ve beton içindeki havanın dışarı çıkarılmasını sağlamak işlemidir. Sonuçta
daha yoğun, daha geçirimsiz bir beton elde edilir. Vibrasyonun şiddeti ve miktarına dikkat edilmelidir.
Aşırı vibrasyon betonda segregasyona neden olduğu gibi, eksik yapıldığında da sıkışma
gerçekleşmeyecektir.
Betonda kullanılan vibratörler,
• Dalıcı vibratörler
• Satıh vibratörleri
• Yüzey vibratörleridir.

gbelge-beton

 

Dalıcı tip vibratör ile vibrasyon yaparken aşağıdaki noktalara dikkat edilmesi gerekir.
• Kolon ve duvar gibi brüt beton yapı elemanlarında, beton uygun kıvamda (8-12cm çökme)
max. 30 cm.lik tabakalar halinde yerleştirilmeli ve sıkıştırılmalıdır.
• Vibratör, beton içinden artık hava kabarcıklarının çıkmadığı ve yüzeyinde ince bir şerbet
tabakası oluşana kadar yaklaşık 15-30 sn kadar tutulmalıdır.
• Vibratörün bir önceki tabakaya 10 cm kadar girmesi sağlanmalıdır.(Şekil-4)
• Vibratör beton içinden yavaşca çekilmelidir. (8cm/sn)
• Vibratör betona düşey olarak daldırılmalı ve daldırma aralığı vibratörlerin etki yarıçaplarına
bağlı olarak 45-50 cm.yi geçmemelidir.
• Vibratörün kalıp yüzeyine ve donatılara temas etmesinden kaçınılmalıdır.
Betonun kürü; betonun yerleştirilip sıkıştırılmasından hemen sonra başlar ve beton yeterli nem
ve sıcaklıkta tutulur. Bunun için beton, sürekli ıslak kalacak şekilde sulanmalı veya üzeri su geçirimsiz
malzemelerle örtülmeli veya kimyasal kür bileşikleri uygulanarak beton güneş ve rüzgardan
korunmalıdır. Sıcak havalarda betonun aşırı su kaybı engellenmezse çatlaklar oluşur ve en önemlisi
hidratasyon için gerekli su kaybolur.Yapılan laboratuar çalışmalarında, kuru ortamda bulunan
betonun, nemli ortamda bulunan betona göre, %50 oranında daha az dayanım kazandığı
görülmüştür(Şekil-5). Sıcaklık ve rüzgar, betonun hızla su kaybetmesine neden olmakta, ve
sonucunda betonda çatlaklar oluşarak dayanımı ve hizmet ömrünü azalmaktadır.

Betonun Kalite Kontrolü aşağıda belirtilen şekilde yapılmaktadır.
1) Yeterlilik Kontrolü:
A) Karışıma girecek malzemelerin uygunluk deneyleri
a) Çimento
b) İnce ve iri agregalar
c) Su
d) Katkı
B) Karışım Dizaynı
İstenilen beton özelliklerini sağlayan malzemelerin cins ve miktarları belirlenir.
2) Nitelik Kontrolü:
A) Üretimin kontrolü
1.maddede belirlenen malzemenin cins, miktar ve özellik olarak üretim süresince
devamlılığının sağlanması.
B) Uygunluk kontrolü
Üretilen taze betondan numuneler alınarak 28.gün sonra dayanım testleri yapılır.
3) Yapıdaki sertleşmiş betonun kalite kontrolü:
A) Tahribatlı metot (Karot)
B) Tahribatsız metot

13
May

G Belgesi İş Akışı

G Belgesi  İş Akışı

  • Yapılan anlaşmaya istinaden personelimiz işletmenizi ziyaret eder, TS EN 206-1 Hazır Beton standardını referans alarak Fabrika Üretim Kontrol Sistemi (FÜKS) dokümantasyonu hazırlanır.
  • FÜKS kapsamında hazırlanacak dokümanlar; Kalite El Kitabı, Teknik Dosya, G ürün etiketleri, Prosedürler, Talimatlar, Planlar, Listeler ve Formlardan oluşmaktadır.
  • Dokümanların hazırlanmasını takiben belgelendirme kuruluşundan denetim talep edilir. Denetim; dokümantasyon ve kalite kayıtları denetimi ile ürün denetimi olmak üzere aşamada gerçekleştirilir.
  • Dokümantasyon denetiminin başarıyla tamamlanmasını takiben denetçi refakatinde belgelendirme yapılacak beton sınıflarından numune alınır. Alınan numunelerin özel laboratuarda kırımı yapılır. Kırım sonuçları uygun çıkan ürünler için G Belgesi hazırlanır.
  • G Belgesinin geçerlilik süresi 1 yıldır. İlgili yönetmelik gereği belgelendirme yapıldıktan sonra yıl içerisinde denetçi kuruluş tarafından habersiz olarak 3 defa hazır beton numunesi alınır, teste gönderilir. Süresi dolan belge her yıl yenilenir.
13
May

Hazır Beton G Belgesi

Hazır Beton G Belgelendirmesi

  • Üretim Kontrol Sistemi Kurulması
  • Muayene ve Deneyler
  • Personel Eğitimi

2